
SAL: a Symbolic Analysis Language

Gratefulfrog: gf at gratefulfrog dot net

August 23, 2006

Contents

1 License 1

2 Quick Start 2

3 User Configuration 3

4 User Manual 5
4.1 Overview . 5
4.2 Quick Start . 5

4.2.1 Installation . 5
4.2.2 System Execution . 6

4.3 How-To’s . 9
4.3.1 How to Understand SAL 9
4.3.2 How to Use the Function sal:process, or How to SAL . 10
4.3.3 How to Use the model.lisp file 13
4.3.4 How to Understand Reports and their CSV Files 14
4.3.5 How to Sugar Functions 14
4.3.6 Special Sugar Functions 21
4.3.7 How to Write a Simple (single-attribute) Rule 22
4.3.8 How to Write a Generic (multi-attribute) Rule 29

4.4 Requirements . 30
4.4.1 Functional Requirements 30
4.4.2 Standard Software Engineering Requirements 31

4.5 Architecture . 31
4.5.1 System Philosophy . 31
4.5.2 System Structure . 31

5 Makefiles 32
5.1 Makefile.0 . 32
5.2 The SAL Makefile . 34

5.2.1 Variable Definitions . 34
5.2.2 High Level Targets . 36
5.2.3 Workhorse Targets . 37

5.3 Makefile Utilities . 40

1

August 23, 2006 2

5.4 File Layout . 41
5.5 Makefile History . 41

6 SAL: The Top level 42
6.1 The SAL Package . 42
6.2 API . 42

6.2.1 process . 43
6.2.2 report . 46

6.3 API Helper Functions . 47
6.3.1 set-up-and-report . 48
6.3.2 report-header . 49
6.3.3 report-line . 50
6.3.4 report-reduce-helper . 51

6.4 Local Utilities . 51
6.4.1 load-sal . 52
6.4.2 load-rules . 53
6.4.3 load-rules-helper . 54
6.4.4 key-2-pathname-lis . 55
6.4.5 path-bin-it . 56
6.4.6 src-name-2-bin-name . 56
6.4.7 Misc. 57

6.5 Test Harness . 58
6.6 File Layout . 59
6.7 Sal Package History . 60

7 The Sugar Functionality 61
7.1 The SUGAR Package . 61
7.2 Where do Sugar Functions come from? 63

7.2.1 att-name-2-sugar-func . 63
7.2.2 attribute-sugar-function 64
7.2.3 sugar-function-symbol . 64
7.2.4 sugar-function-name . 65
7.2.5 create-sugar-function . 66

7.3 How do Sugar Functions Work? 67
7.3.1 exec-sugar . 67
7.3.2 parse arguments . 69
7.3.3 parse-0 . 69
7.3.4 parse-1 . 71
7.3.5 parse-2 . 73
7.3.6 parse-3 . 77
7.3.7 parse-4 . 79
7.3.8 find-or-project . 81
7.3.9 project . 83
7.3.10 some-rule . 84
7.3.11 return-val-projected? . 85

7.4 How are Sugar Functions Stored? 86

August 23, 2006 3

7.4.1 init-sugar . 86
7.5 Where do Sugar Functions Go when No Longer Needed? 88

7.5.1 create-sugar-function-nullifier 88
7.5.2 nullify-sugar-functions . 89
7.5.3 make-null-sugar-func . 90

7.6 Attribute Name “Apply” function and Helpers 91
7.6.1 apply-attribute-sugar . 91
7.6.2 remove-double-spaces . 92

7.7 Loop detection . 93
7.7.1 create-loop-detector . 93
7.7.2 show-loop . 95

7.8 SAL’s private Sugar Functions 95
7.8.1 create-simple-get-data . 95
7.8.2 industry . 96

7.9 Test Harness . 97
7.10 File Layout . 98
7.11 SUGAR Package History . 100

8 Rule Support Functions 102
8.1 The RULE-FUNCS Package . 102

8.1.1 init . 103
8.1.2 defrule . 104
8.1.3 defreport . 106
8.1.4 model-report-helper . 106
8.1.5 defmodel . 107
8.1.6 defdata . 107
8.1.7 defdata-helper . 108
8.1.8 load-datum . 109

8.2 File Layout . 110
8.3 RULE-FUNCS Package History 111

9 Internal Data Structures 112
9.1 The INTERNAL-DATABASE-STRUCTURE Package 113

9.1.1 make-db . 114
9.1.2 lookup . 115
9.1.3 gethash-case-1-2 . 117
9.1.4 gethash-case-3-5 . 118
9.1.5 gethash-case-4 . 119
9.1.6 create-secondary-table . 120
9.1.7 get-keys . 120
9.1.8 map-model-atts . 121
9.1.9 get-rules . 122
9.1.10 get-model-attributes . 123

9.2 Test Harness . 124
9.3 File Layout . 126
9.4 INTERNAL-DATA-STRUCTURE Package History 127

August 23, 2006 opening.nw 4

10 SAL Utilities 128
10.1 Code elements . 128

10.1.1 2string . 129
10.1.2 abs-year . 129
10.1.3 cfg-pkg-name-eval . 130
10.1.4 current-year . 130
10.1.5 Logging . 131
10.1.6 mappend . 134
10.1.7 numlist . 134
10.1.8 Ordered Insertion . 135
10.1.9 out-stream . 138
10.1.10path-get . 138
10.1.11Testing . 139
10.1.12s-assoc . 142

10.2 File Layout . 143
10.3 Test Harness . 145
10.4 Utilities Package History . 147

11 SAL Configuration 149
11.1 The SAL-CONFIG Package . 149

11.1.1 Build & Install data . 150
11.1.2 Stock Model Data . 151
11.1.3 Input & Output data . 152

11.2 File Layout . 152
11.3 Sal-Config Package History . 153

12 The Sal Builder 154
12.1 The SAL-BUILD Package . 154

12.1.1 load-config . 155
12.1.2 make-install . 156
12.1.3 do-compile-load . 157

12.2 File Layout . 158
12.3 SAL-BUILD Package History . 158

13 Outstanding Issues 159

14 Index 168
14.1 Symbol Definition Index . 168
14.2 Defined Code Chunks . 171

Abstract

This document is a literate program called SAL: Symbolic Analysis Language.
SAL runs in the Common Lisp environment. SAL has been tested in both on
GNU CL and CMUCL.

The support for the Literate version of SAL is based on noweb, LATEX,
TEXand their friends. All those systems are needed to be able to build and
install SAL.

The idea behind literate programming is that a program should read like a
book if it is to be maintainable over time. The use of noweb enables us to main-
tain a single set of source files containing both description and code. These files
are manipulated by the noweb functions to extract code and documentation.
This is often called: “tangling out the code” and “weaving up the documenta-
tion.”

In this version of SAL, the GNU make utility is used to perform all the
tangling and weaving so that understanding the exact details of the commands
used is not needed by the user who simply wants to build and install SAL in
the Common Lisp environment.

Chapter 1

License

GPL http://www.gnu.org/licenses/gpl.html

1

Chapter 2

Quick Start

If you’re in a hurry to get this running then:

Configure SAL: chapter 3 on page 3,

Make-Install: chapter 5 on page 32.

2

Chapter 3

User Configuration

This chapter contains the user configuration parameters for SAL. Before build-
ing SAL, these values must be set in the noweb source file user-config.nw.
When updating:

• first make a backup copy of user-config.nw,

• be careful to avoid adding extra blank lines which could cause problems
during file generation,

• be sure that all path names end in the slash “/” character,

• don’t forget to make that back-up copy!

The following names must be set to appropriate values on your system.

The full path to the location of the configuration file sal-config.lisp.
This is both a target location for make install and a reference used during
SAL execution:

3a 〈configfile-path 3a〉≡ (34 53a)

/home/bob/.sal-config.lisp

The full path to the location of the lisp source files after they are built from
the noweb sources:

3b 〈src-file-path 3b〉≡ (150a)

/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/V7.0/

The full path to the location of the binary files. This is both a target location
for make install and a reference used during SAL execution:

3c 〈bin-file-path 3c〉≡ (34 39c 150b)

/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/bin/

The full path to the location of the model and rule files. This is a reference
location used only during SAL execution:

3d 〈model-rule-path 3d〉≡ (34 151a)

/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/bin/Examples/

3

August 23, 2006 user-config.nw 4

The name of the model file that SAL will read during execution:

4a 〈mode-filename 4a〉≡ (151b)

model.lisp

The full path to the directory where SAL will write all output during exe-
cution:

4b 〈io-path 4b〉≡ (152a)

/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/Output/

The name of the log file that SAL will write if the logging option is TRUE:

4c 〈log-filename 4c〉≡ (152b)

sal-log.out

The full path to the Lisp executable that will be used to compile and run
SAL. This is only used by the Makefile. It is never used during SAL execution:

4d 〈lisp-path 4d〉≡ (34)

/opt/cmucl-19c/bin/lisp

Chapter 4

User Manual

4.1 Overview

The purpose of the Symbolic Analysis Language is to provide a flexible language
and analysis engine enabling the application of rule-based data projection tech-
niques to create and update a model of a set of data.

The platform maintains in memory a data set which can contain both in-
temporal, i.e. always true as well as time-dependent data.

Rules may be written as normal lisp functions which project/derive data
values for specifically desired dates via so-called sugar-functions (chapter 4.3.5
on page 14).

All data is also available for query and/or update via the sugar-functions at
the lisp command line, or via automated reporting as comma separated values
either to a file or to std-out.

This document uses a stock market data-base as the basis for illustrations.

4.2 Quick Start

So, you want to see it work and don’t want to know how, why, etc.? Well, so be
it. But, if you never read the rest of the documentation you may never know
about the amazing functionality that is too powerful to describe in this section1.

4.2.1 Installation

Once you have updated the file user-config.nw (cf. chapter 3 on page 3), you
should be able to follow the instructions on how to make and install SAL as
provided in chapter 5 on page 32.

If it’s too hard to follow those links, here’s the short version:

1Not reading the documentation has been the reason that humanity has missed out on great
things such as Fermat’s theorem, learning that the Earth was round, and Frank’s discovery
of a limitless supply of free energy available to all.

5

August 23, 2006 doc.nw 6

5 〈make-install-sal 5〉≡
$ make

$ make

$ make install

$ make sal-test

If that doesn’t work, then you’ll just have to read the above referenced pages.

4.2.2 System Execution

After the system has been successfully built and installed, it’s time to try it out!
Did you install the examples? If not, do it now:

6a 〈install-examples 6a〉≡
$ make examples

Now you are ready to start the lisp environment:

6b 〈start-lisp 6b〉≡
$ lisp

CMU Common Lisp 19c (19C), running on bartbox

With core: /opt/cmucl-19c/lib/cmucl/lib/lisp.core

Dumped on: Thu, 2005-11-17 15:12:58+01:00 on lorien

See <http://www.cons.org/cmucl/> for support information.

Loaded subsystems:

Python 1.1, target Intel x86

CLOS based on Gerd’s PCL 2004/04/14 03:32:47

*

Next, load the sal binary (be sure to use the correct path for your system):

6c 〈load-sal-bin 6c〉≡
* (load "/home/sal/bin/sal.x86f")

; Loading #P"/home/sal/bin/sal.x86f".

;; Loading #P"/home/sal/Config/sal-config.lisp".

;; Loading #P"/home/sal/bin/utilities.x86f".

... lots of information is output....

T

*

Then, load some data:

6d 〈load-test-data 6d〉≡
* (load "/home/sal/bin/Examples/data.lisp")

; Loading #P"/home/sal/bin/Examples/data.lisp".

T

*

August 23, 2006 doc.nw 7

Now, run the test harness and check the results!

7 〈run-sal-test 7〉≡
* (wut:test "sal")

;;; Starting dribble.

;;; (wut::drib)

;;; Go for an analysis on [2005 2010],

verbose,

print to std-out

;;; (format t "~S~%" (sal:process :ticker-string "ibm"

:current-year 2006

:verbose t

:data *ibm-data*

:report-start 2005

:report-stop 2010

:std-out t

:file-out t

:out-file-name "this-is-output"

:logging t

:loop-detect t))

;

... Lots of info here, then ...

"Ticker","ID","Field",yr_2005,yr_2006,yr_2007,yr_2008,yr_2009,yr_2010

"ibm",4786,"Profit",83000.0,85000.0,85000.0,85000.0,100000.0,100000.0

"ibm",4786,"After Tax Earnings",7750.0,8250.0,8250.0,8250.0,10327.5,

10327.5

"ibm",4786,"Capital Expenditure",4030.0,4275.0,4275.0,4275.0,4995.0,

4995.0

"ibm",4786,"Smoothed Capital Expenditure",2.6133333333333333,

2.6999999999999997,2.766666666666667,2.85,3.1333333333333333,

3.4166666666666665

"ibm",4786,"Free Cash Flow",12662.386666666667,13162.3,

13162.233333333334,13162.15,15239.366666666667,15239.083333333334

"ibm",4786,"Employees",329001.0,329001.0,329001.0,329001.0,329001.0,

329001.0

"ibm",4786,"Manufactured Goop",100.0,100.0,100.0,100.0,100.0,100.0

"ibm",4786,"Manufactured Toto",2006.0,2007.0,2008.0,2009.0,2010.0,

2011.0

... More info, then ...

"Ticker","ID","Field",yr_2005,yr_2006,yr_2007,yr_2008,yr_2009,yr_2010

"ibm",4786,"Profit",83000.0,85000.0,85000.0,85000.0,100000.0,100000.0

"ibm",4786,"After Tax Earnings",7750.0,8250.0,8250.0,8250.0,10327.5,

10327.5

"ibm",4786,"Capital Expenditure",4030.0,4275.0,4275.0,4275.0,4995.0,

4995.0

"ibm",4786,"Smoothed Capital Expenditure",2.6133333333333333,

2.6999999999999997,2.766666666666667,2.85,3.1333333333333333,

3.4166666666666665

"ibm",4786,"Free Cash Flow",12662.386666666667,13162.3,

August 23, 2006 doc.nw 8

13162.233333333334,13162.15,15239.366666666667,15239.083333333334

"ibm",4786,"Employees",329001.0,329001.0,329001.0,329001.0,329001.0,

329001.0

"ibm",4786,"Manufactured Goop",100.0,100.0,100.0,100.0,100.0,100.0

"ibm",4786,"Manufactured Toto",2006.0,2007.0,2008.0,2009.0,2010.0,

2011.0

#<EQUAL hash table, 278 entries {586BA6ED}>

;;; Stopping dribble.

;;; (wut::drib nil)

; Evaluation took:

; 1.13 seconds of real time

; 0.696894 seconds of user run time

; 0.074989 seconds of system run time

; 1,135,577,868 CPU cycles

; [Run times include 0.13 seconds GC run time]

; 1 page fault and

; 40,281,672 bytes consed.

;

T

*

August 23, 2006 doc.nw 9

So you’ve made SAL run! But what if this failed? What should you do?
Well, you’ve got all the lisp source files, you’ve got the test data, you’ve got the
Makefile, and you’re reading the full system documentation. What more do you
need?

This ends our quick-start. Those who want to fully understand should read
on, others can stop here...

4.3 How-To’s

4.3.1 How to Understand SAL

The purpose of SAL is to provide an infrastructure that can deduce new values
from old ones. For example, if SAL knows that the sun rose today and if SAL
is given a rule:
If the sun rose yesterday, then it will rise today.
then SAL could deduce that the sun will rise tomorrow, the day after tomorrow,
and so on.

This may sound silly or dangerous. One may wonder where the deductive
process will stop? Won’t a rule like that cause an infinite loop? Happily, the
answer to the latter is No, there will be no loop. The answer to the former is
that SAL simply won’t start. SAL does no deduction on its own. SAL only
replies to queries.

Continuing the example, once SAL has been give the data and a rule, it
does nothing. Only when SAL is queried as to the status of the sunrise for a
given day will the deductive process begin. So, if one asks SAL: Will the sunrise
tomorrow?, SAL will use the above fact and rule to project the datum: “(sunrise
tomorrow)”.

To summarize:

SAL has data: SAL manages two different types of data: those that are always
true, and those that are true at a particular time. These are respectively
called factual, and temporal data. Both of these types of data may be
provided as input or be the result of projection, i.e. rule firings. The
origin of the information is also managed: the origin of the data may be
either user input or projection,

SAL has rules: A rule can perform the projection of a new datum. A rule may
use any and all facts, and indirectly any and all rules in SAL’s possession
to project new data,

SAL answers queries: SAL will attempt to respond to any data query such
as: Give me the value of toto in the year 2020, which would be writ-
ten (toto 2020). It will first simply look for the datum in its internal
database. If the value is present, either because it was supplied by the
user, or as the result of a previous projection, then it will be returned as
the response to the query. If the datum is not available at the moment of

August 23, 2006 doc.nw 10

the query, then SAL will attempt use rules as needed to project all miss-
ing data needed to respond to the query. SAL effectively backtracks from
the date of the query, executing rules as needed, until all missing data is
available, and the response to the initial query is available. In the previ-
ous example, a query on the status of sunrise for next Wednesday would
cause SAL to project sunrise values for every day from today, until next
Wednesday. This is due to the form of the rule which can only project
sunrise status for a given day based the immediately preceding day.

4.3.2 How to Use the Function sal:process, or How to
SAL

What are all those arguments to that function sal:process? And what does
that function do anyway? How do I use it?

SAL processing is invoked by a call to the function sal:process.
Indeed, the “process” function in the sal package is the main all singing all

dancing entry point to the sal application interface. This function can load
data, model definition, rules, and generate reports. We’ll have to look at each
of these terms before we can get to the discussion of the function arguments.

Data

SAL needs data. When the file sal.x86f (x86f extension is used by CMUCL)
is loaded, SAL’s internal data structures (cf. chapter 9 on page 112) are empty.
SAL can do nothing without data. Loading data into SAL means giving it
a pointer to a list-of-lists data structure by means of the data argument to
process. This argument can be arbitrarily structured but the leaves must be
of the form:
“(attribute value date)” or “(attribute value)” where attribute is a string,
value is any valid lisp object and date is a number (cf. defdata function defi-
nition, chapter 8.1.6 on page 107 for more information).

SAL creates sugar function support for all the attributes that are encoun-
tered during the processing of the data argument by the function defdata. See
section 4.3.5 on page 14 for more information on sugar functions.

SAL requires data. An error will be raised if the data argument contains no
valid data.

Model

What about attributes that are needed for computation, but for which no values
are available at the time when process is called? These are defined to be the
model attributes. These attributes are declared by an evaluation of the function
rf:defmodel.

The argument mdl-path could contain a pathname object which points to
a file containing calls to rf:defmodel. Alternatively, a call to rf:defmodel

could be evaluated elsewhere. In any case, sugar function support will only be

August 23, 2006 doc.nw 11

created for attributes loaded by means of the data argument or defined in an
evaluation of a rf:defmodel call.

So what does the call to defmodel look like? Well here’s an example:

(rf:defmodel "Profit"

"After Tax Earnings"

"Capital Expenditure"

"Smoothed Capital Expenditure"

"Free Cash Flow")

In this call we have declared five model attributes. Indeed, each of these
corresponds to a value derived from other data, and as such could not be created
by the initial loading of data via defdata.

Reports

SAL’s purpose is to answer queries. These are answered in the form of “comma
separated variable” files called reports. Only attributes specified for reporting
will be output to the report files. To declare an attribute for reporting, use the
function defreport. For examples, check the Examples directory for rule files
which contain defreport calls.

Beyond the declaration of report attributes, a reporting period must be
defined. This is done by means of the two arguments: report-start and
report-stop.

The report file will be generated containing values for all reporting attributes
over the period [report−start, report−stop]. Section 4.3.4 on page 14 contains
more information on the format of the report files.

Where will the report be put? Well this depends on the following arguments:

std-out ; default t : If TRUE, then a report will be written to std-out.

file-out ; default t : If TRUE, then a report will be written to a file. This argu-
ment and previous one behave independently of each other, i.e. reporting
can go to either std-out or file, or both, or neither.

out-file-name : If supplied, file-out report will go to out-file-name.csv in
directory indicated in sal-config.lisp. if not supplied, report will go to
ticker.csv.

Specific Arguments for Stock Market Analysis

SAL was written to analyze stocks. As such, there are two arguments to
sal:process which are specific to this particular domain. These are:

ticker-string This string should give the ticker name of the stock being
analyzed.

current-year This argument should contain the current year, as a four digit
integer. If not provided, the system time will be used to establish the
current year value.

August 23, 2006 doc.nw 12

Other Arguments

At this point all the functional arguments have been described. The remaining
arguments are used to control SAL’s behavior at a technical level. Beware that
if TRUE, each of these will have a negative impact on SAL’s execution speed.

These are:

verbose default t : will control output of SAL’s information messages. being
done

logging default nil : This argument controls SAL’s logging. If TRUE then a
log will be appended to the file specified in sal-config.lisp.

loop-detect default nil : If TRUE, SAL will detect looping conditions in rule
firings. See Section 4.3.7 on page 22 for more information on rule firing
loops.

Now, having looked at all the arguments, we can understand the lisp function
definition in which they are specified:

12 〈sal:process-arg-def 12〉≡ (43a)

(defun process (&key

ticker-string

(current-year (wut:current-year))

(verbose t)

report-start

report-stop

data

(mdl-path

(wut:path-get

(cfg-pkg-name-eval "*sm-model-filename-string*")

(cfg-pkg-name-eval "*sm-model-path-string*")))

(std-out t)

(file-out t)

out-file-name

logging

loop-detect)

August 23, 2006 doc.nw 13

As you can see, all of the arguments are keyword arguments, and are there-
fore optional. However, being optional for lisp, doesn’t ensure that SAL will be
able to function if an incoherent set of arguments is provided.

Here is a summary of the arguments and their meaning:

ticker-string mandatory: The name of the stock to be analyzed.

current-year optional: The 4 digit integer representation of the current year;
will default to the current year in system time if not provided.

verbose optional: default t : controls SAL’s information messages.

report-start optional: if present, will be start date for reporting.

report-stop optional: if present, will be end date for reporting.

data mandatory: an arbitrarily structured tree containing data tuples as leaves.

mdl-path optional: the pathname object pointing to the file containing defmodel
calls. If not present, will default to a value from sal-config.lisp.

std-out optional. If true, report will be written to std-out, default is t.

file-out : optional. If true, report will be written to a file, default is t.

out-file-name : optional string. If present, and if file-out is TRUE, then
report will be written to out-file-name.csv. If not present, report will
be written to ticker-string.csv.

logging optional: default nil : If TRUE, SAL will append logging data to the
log file specified in sal-config.lisp.

loop-detect optional: default nil : If TRUE, SAL will detect loops in rule
firings.

4.3.3 How to Use the model.lisp file

The model.lisp is used to inform SAL of attributes for which there may be
no data initially available to load into SAL’s database. For example, if we have
revenue and cost data, but no profit data, then the profit attribute should be
declared by a call to rf:defmodel. This call is most conveniently located in the
the file model.lisp since sal:process will then automatically load it at the
appropriate time in the processing sequence.

An example of the declaration of the model attributes Profit and Value is
the following:

(rf:defmodel "Profit"

"Value")

The arguments to rf:defmodel are strings. The values are case-sensitive,
i.e. “Profit” is distinct from “profit”. Any number of strings may be supplied
as arguments to rf:defmodel.

August 23, 2006 doc.nw 14

4.3.4 How to Understand Reports and their CSV Files

SAL’s reports are so simple to understand that it’s almost silly to write this
“how-to.” Yet, the “how-to” is written, so you may as well read it, too.

A report is a comma-separated file respecting the following standard:

• data is presented as lines of data elements,

• data elements are separated by commas, e.g.
data,data,data,

• there are no separators other than commas, i.e. no spaces, tabs, etc.

• data elements may be either strings or numbers,

• all strings are enclosed by double-quotes, e.g.
"this string",

• all numbers are not enclosed in quotes; they use the dot as the decimal
separator, e.g. ,3.14159,

• a newline character ends each line of data,

• a missing datum is indicated by consecutive commas, e.g.
"the","next","element","is","missing",,

• there is a single header line made as per the following with the year num-
bers running over the reporting period (naturally):
"Ticker","ID","Field","yr_2005","yr_2006"

• the content of the other data lines conforms to the specification given in
the header line, e.g.
"ibm",4786,"Profit",83000.0,95000.0

So what about customization of the Report layout? Well, if there is a require-
ment, everything is possible. For the moment, let’s hope that the requirement
doesn’t appear. . .

4.3.5 How to Sugar Functions

Sugar functions are at the heart of SAL. They are main application interface
given to the user. They are the “L” of “SAL”, as in Language. They are also
used internally in SAL’s implementation.

But, they are really only syntactic sugar, and so the name!
So what are they, those sugar functions? What syntax are they sweetening?
As we said, SAL is made to answer queries and SAL needs data to make

those answers, and SAL uses rules to deduce new data. We will explain the
sugar by means of an example. Let’s start with some data:
(ceo "John Smith").

Internally, SAL maintains a database. To query it we would need some kind
of SQL-ish statement:

August 23, 2006 doc.nw 15

> select ceo,

> from data.

"John Smith"

In our sweet syntax, i.e. sugar function syntax, we would only have to write:

> (ceo)

"John Smith"

So the sugar function used here is called ceo and it behaves and can be used
just like any other lisp function. Sugar function syntax, encapsulates database
SQL-ish functionality in a user-friendly manner. SAL creates sugar functions
dynamically for all data or model attributes that are loaded. The explanation
of how this miracle is accomplished can be found in Section 7 on page 61.

Sugar-functions may be evaluated at the lisp command line, or called any-
where in lisp code, to perform both queries and updates to the data set. We
will first describe the query calls, then the updating calls 2.

The following examples of sugar-calls have been executed after running the
automated reporting:

Sugar Function Queries

We’ll remember that data is either always true, i.e. factual, or true for a specific
date, i.e. temporal. It is important to understand that SAL doesn’t really know
the difference between always true and sometimes true. SAL thinks of dates as
either numbers, e.g. 25, -6, 1960, or as the special lisp symbol t . The former
correspond to temporal data, and the latter to factual data.

Also, SAL offers some shortcuts and abbreviations for dates:

• no matter what the query, SAL first looks for a corresponding fact. So
a query about the speed of light in 1999, would return the same value,
and follow the same search path, as a query for the speed of light without
reference to a date,

• if no date is given, SAL first looks for a fact, then if none is found, looks
for temporal data for the current-year.

• if the date d is such that |d| ≤ 100 then SAL considers it a a relative date,
i.e. an offset relative to the current-year.

Is that confusing? Well, it may well be. The following examples3 may clarify
things. . .

* (ceo) ; SAL looks for a ceo fact or ceo of current-year.

"John Smith"

2To use the sugar functions without the ’sgr:’ prefixes, first run the lisp command:
(use-package "SUGAR").

3Some blank lines and semicolons have been removed from the lisp output to unclutter the
text.

August 23, 2006 doc.nw 16

NIL

* (ceo t) ; SAL looks for a ceo fact, only.

"John Smith"

NIL

* (ceo -3) ; SAL looks for a ceo fact, or the ceo of 3 years ago.

"John Smith"

NIL

* (ceo 2005) ; SAL looks for a ceo fact, or the ceo for the year 2005.

"John Smith"

NIL

Are you wondering what all those nil values are? If you’re not, then maybe
you should be! Indeed, sugar functions return two values. In the case of queries,
the second value is nil if the data was loaded or if was set, and the value is t if
it was projected. The following examples illustrate this.

* (ceo t :project "Fred") ; ceo value is projected to Fred.

"Fred"

T ; T indicates that Fred was projected.

* (ceo)

"Fred"

T ; T indicates that Fred was projected.

* (ceo t :set "Mary") ; Set is what happens when data is entered

"Mary" ; by a call to defdata.

NIL ; NIL indicates not projected.

* (ceo)

"Mary"

NIL ; NIL indicates not projected.

Indeed, we haven’t even finished discussing queries and we are already full
into the realm of updating. Forgive me, let’s hold off on the temptation to
explain updating and step back into the world of queries.

Another query form concerns lists of values corresponding to periods of time.
Here are some examples which should be self explanatory:

* (profit) ; find the profit for the current year.

85000.0d0

T ; indicates a projected value.

* (profit 1999 2004) ; find the profit for [1999, 2004].

(77548.0d0 78396.0d0 75866.0d0 71186.0d0 79131.0d0 86293.0d0)

(T T T T T T) ; indicates that all values are projected.

August 23, 2006 doc.nw 17

* (profit -1 +1) ; find the profit for

; [current-year - 1, current-year + 1].

(83000.0d0 85000.0d0 85000.0d0)

(T T T)

* (profit -1 2007) ; for [current-year - 1, 2007].

(83000.0d0 85000.0d0 85000.0d0)

(T T T)

So is that it? Have we finished discussing sugar function queries? Well, not
quite. There are two more points to address.

• qualification of queries to accept projected data or not,

• technical queries to learn what rules may be fired when looking for an
attribute’s value.

The “:projected?” keyword

The observant reader has already noticed that the second return value of sugar
function queries is a boolean indicating if the values are projected or not. It
may be that the user wants to ensure that projected values are excluded from
the return. This is done by means of the keyword argument :projected?. The
following examples illustrate various cases of its use:

* (revenues 0 3) ; get the revenues on

; [current-year, current-year +3]

; :projected? is T by default

(95000.0d0 95000.0d0 95000.0d0 110000.0d0) ; 4 values are returned

(NIL T T NIL) ; 2 values are projected, 2 are not

* (revenues 0 3 :projected? nil) ; get only NOT PROJECTED revenues

; on same period

(95000.0d0 NIL NIL 110000.0d0) ; the projected values are excluded!

(NIL NIL NIL NIL)

* (revenues 0 3 :projected? t) ; use of t is the same as not

; using the argument.

(95000.0d0 95000.0d0 95000.0d0 110000.0d0)

(NIL T T NIL)

Now, at last, we are almost finished with sugar function queries . . .

Rule Query

In some special cases, advanced users may wonder how values have been com-
puted, or why values aren’t being computed, etc. There is an easy way to see
which rules could potentially fire when seeking an attribute’s value. The follow-
ing example illustrates how to use () or nil as an argument to a sugar function
to obtain this information.

August 23, 2006 doc.nw 18

* (revenues nil)

(#<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C4DA49}>

RULE-FUNCS:USE-PREVIOUS)

NIL

Wowawowowa! What is that about? If you don’t understand the
#<Closure Over Function ...> then you should probably skip the rest of this
section.

So, you’re still reading, brave soul, good for you!
When a sugar function is called with the single argument nil, i.e. the empty

list, a technical query is launched returning two values:

1. all rules known to generate the attribute, i.e. general rules associated with
all attributes, as well as rules specifically associated with the attribute in
question,

2. all rules which are specifically associated with the attribute in question.

Both lists are ordered in according to the way that the rules would fire.
In the previous example, we see that there are two general rules associated

with the attribute revenues:

1. #<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C4DA49}>

2. RULE-FUNCS:USE-PREVIOUS

We see that nil as second return value indicates that there are no rules specifi-
cally associated with the attribute revenues. Thus we can deduce that the two
rules mentioned are general rules associated with all attributes. As an aside, one
can see that the first general rule is a closure, and not simply a function name.
In fact, this rule is internally defined and used by SAL to query the database.
The other rules, those which are indicated by their names, are user defined.

Here is another, more complete example:

* (profit ())

(#<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C54871}>

RULE-FUNCS:SIMPLE-PROFIT RULE-FUNCS:USE-PREVIOUS)

(RULE-FUNCS:SIMPLE-PROFIT)

This time we see that there are three rules indicated in the first return value.
This is the union of general rules and rules specifically associated with profit:

1. #<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C4DA49}>

2. RULE-FUNCS:SIMPLE-PROFIT

3. RULE-FUNCS:USE-PREVIOUS

We note that the additional rule, SIMPLE-PROFIT appears in the middle of
the list. Why would that be? Because the list is returned in the order of

August 23, 2006 doc.nw 19

precedence, i.e. the order in which the rules will be fired when seeking a value
of profit.

The second return value is a list which contains the single rule which is
specifically assigned to profit: RULE-FUNCS:SIMPLE-PROFIT

At this point, dear reader, you can say that you know all there is to know
about sugar function queries!

Sugar Function Updates

After reading up to this point, you should feel comfortable with the use of sugar
functions as a convenient means to query the database. That’s fine, but what
about updating? You may need to load and/or update projected data and/or
new data which is not deduced. This is the second usage for sugar functions.

As we have previous mentioned, data enter SAL in two forms:

projected data: data which the user has computed, or deduced, based on rules
and/or other data and which is declared by a sugar function :project call.

set data: data which is entered via direct loading through defdata or process,
or which is declared as set by a sugar function :set call.

Both of these forms of data may be expressed by sugar functions of the
form (< attribute >< date >< keyword >< value >). The following examples
illustrate this:

* (industry)

"COMPUTER"

NIL

* (industry t :set "garbage") ; set industry’s value to "garbage",

"garbage" ; date ’t’ indicates factual data.

NIL

* (industry) ; query shows "garbage" NOT PROJECTED.

"garbage"

NIL

* (profit) ; query profit for current year

85000.0d0

T ; it is a PROJECTED value

* (profit 0 :set 99) ; SET profit for current year

99 ; note date argument is NOT OPTIONAL with

; :set or :project keywords!

NIL ; it is a NOT PROJECTED value

* (profit)

99

NIL

* (profit 0 :project 88) ; project the value for current year

88

T ; T indicates a PROJECTED value

August 23, 2006 doc.nw 20

* (profit) ; query confirms!

88

T

That was easy, wasn’t it!? But by now the reader should expect some spice
in each section, and here it comes. sugar functions can also be used for other,
more technical forms of updating. The following forms may also be used:

(<attribute> :model <indicator>) : This form is used to declare a model
attribute and to indicate its membership to the list of reported attributes
or not,

(<attribute> :rule <name> :prec <precedence>) : This form associates
a rule function with an attribute.

The first of the above forms is used to declare a model attribute and to
indicate if it should be reported or not (cf. section 4.3.3 on page 13 for more
information on model attributes).

Attention, the values of the indicator are subtle:

t : indicates a MODEL attribute that is to be REPORTED,

true value other than t : indicates a MODEL attribute is NOT to be re-
ported,

nil value : indicates NOT a MODEL attribute.

The following examples should make this clear:

* (profit :model t) ; declare profit both MODEL and REPORTED

"Profit" ; the string name of proift is "Profit"

T

* (profit :model 1) ; declare profit MODEL and NOT reported

"Profit"

T

* (profit :model nil) ; declare profit NOT model and NOT reported

"Profit"

NIL

The second form is used to associate a rule function with an attribute at a
specific precedence value which must be > 0 (cf. section 4.3.7 on page 22 for
more information on rule functions).

Below we define a (boring) rule function and associate it with profit at a
precedence value of 20:

* (defun my-rule (&rest args)

"this is an empty-rule that will always fail."

August 23, 2006 doc.nw 21

(declare (ignore args)) ; to prevent lisp warnings

(values ()())) ; definition of the rule function

MY-RULE

* (profit :rule #’my-rule :prec 20) ; association to "profit"

; with precedence = 20

(#<Interpreted Function MY-RULE {58536831}> . 20)

T

* (profit ()) ; query the rules for "profit"

(#<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C54871}>

RULE-FUNCS:SIMPLE-PROFIT #<Interpreted Function MY-RULE {58536831}>

RULE-FUNCS:USE-PREVIOUS)

(RULE-FUNCS:SIMPLE-PROFIT #<Interpreted Function MY-RULE {58536831}>)

; my-rule appears as the only specific rule association for "profit"

4.3.6 Special Sugar Functions

We have seen that sugar function are automatically created for all attributes as
they are introduced to SAL. In addition, there are few special sugar functions
created by SAL itself. These should be used with extreme caution if they are
called in update forms! The following are the special sugar functions:

general-rules : This sugar function will process the general rules known to
SAL.

model-attributes : This sugar function will process the list of model-attributes.

Here are some examples of their use in query forms:

* (use-package "SGR")

T

* (general-rules)

(#<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C3BB01}> . 0)

((RULE-FUNCS:USE-PREVIOUS . 100))

* (model-attributes)

("Loopy" "Profit" "After Tax Earnings" "Capital Expenditure"

"Smoothed Capital Expenditure" "Free Cash Flow" "Employees"

"Manufactured Goop" "Manufactured Toto")

T

Summary of Sugar Function Forms

The following is the exhaustive list of sugar function forms:

(< attribute >) : query for attribute’s fact or current year value,

August 23, 2006 doc.nw 22

(< attribute > t) : query for attribute’s fact value,

(< attribute > < date >) : query for attribute’s fact or date value where date <

100 indicates a value relative to the current year, and the date value t in-
dicates a fact value only,

(< attribute > < start > < end >) : query for attribute’s fact or date value
for each date on [start, end],

(< attribute > < date > :projected? < bool >) : query for attribute’s fact or
date value accepting projected values if the boolean is true or refusing if
false,

(< attribute > < start > < end > :projected? < bool >) : as previous but
for fact or date value for each date on [start, end],

(< attribute > ()) : query for rule functions associated with attribute,

(< attribute > < date > :set < value >) : set attribute’s value for date,

(< attribute > < date > :project < value >) : project attribute’s value for
date,

(< attribute > :model < indicator >) : declare attribute as reported and model
if indicator is a t, declare as model but not for reporting if indicator is a
true value 6= t, declare not a model attribute if indicator is false,

(< attribute > :rule < rule function > :prec number) : associate rule func-
tion with attribute at precedence number - note that precedence must
be > 0.

4.3.7 How to Write a Simple (single-attribute) Rule

This How-To explains the procedure used to create a rule which will handle
queries to a single attribute.

What is a Rule?

A rule is simply a lisp function which meets the following requirements:

1. It is called with 2 arguments:

(a) an attribute as a string,

(b) a date which could be either t or a number.

2. It returns two values:

(a) either the value of the attribute for that year, or nil if not available,

(b) t if the value is projected or nil otherwise.

August 23, 2006 doc.nw 23

The rule function may also have side effects, such as writing the value of
the attribute for the date into the internal database, but this is not required.
It may seem surprising to see that a rule is not required to update the internal
database with the value it computes. In fact, this lack of constraint allows the
system’s own lookup mechanism to be written as rules. Of course, it would be
much more efficient if, as a side effect, the rule were to write any computed data
to the database (with a :project or :set call, for example). If not, the same
computation may be performed over and over again during processing.

So in summary, a rule can be any lisp function that meets the requirements
listed above. Here are some simple and even silly examples:

(defun does-nothing (att date)

"This rules does nothing and failes."

(declare (ignore att date)) ; to avoid warnings

(values ()()))

(defun always-10 (&rest un-used)

"This rule will return the value 10, not-projected.

It will not update the database"

(declare (ignore un-used)) ; to avoid warnings

(values 10 ()))

(defun complicated-rule (att date)

"If the date is a number, it is the value returned, otherwise

use 0. In both cases, it is a Projected value."

(declare (ignore att)) ; to avoid warnings

(values (if (numberp date) date 0) t))

Each of these silly rules complies with the requirements and could therefore
be used by the analysis engine. After a short digression on the analysis engine
in the following section, we will then discuss the writing of rules! Please be
patient . . .

When are rules called?

The analysis engine is brought into play each time a query is made by means of
a sugar-function. For example, a call such as:

* (profit 2050)

will set the analysis engine into operation, searching for a value for the attribute
profit for the year 2050. The engine will search for the value by first looking in
the internal database for the corresponding value. This could be either a factual
value which is true for all times, or a datum which is true for the specific date
requested, in this case the year 2050.

If neither of these values is available, the analysis engine will then begin
applying all rules which have been registered as applicable to the attribute

August 23, 2006 doc.nw 24

profit, including rules which apply to all attributes (generic rules). These rules
will be applied in order of increasing precedence until either a value is discovered,
or all the rules fail. In both cases the query is considered as terminated, i.e. no
error is generated.

Now that sounds simple doesn’t it? Well it is simple, but what happens if a
rule needs data about an (attribute, date) pair to produce a value to answer
the query? In the example, suppose that there were a rule that said, “Profit for
a year is the difference between revenues and costs for that year.” When this
rule fires on the attribute profit, for the year 2050, it will generate two new
queries: (revenues 2050) and (costs 2050).

These two queries will again set the analysis engine into action, looking
first in the database, then applying rules to try to find values if needed. The
only limit to the depth of this recursive search is that imposed by the lisp
environment.

If it still sounds simple, then you are doing well and keeping up.
So, what can go wrong? Well, suppose that a sequence of rule firings is circu-

lar, i.e. there is a loop. Continuing our example, suppose we had an additional
rule: “Revenues for a year are the difference between profit and costs.” Now we
have a potential loop which could occur as follows:

1. query (profit 2050)

2. profit rule fires generating the query (revenues 2050)

3. revenues rule fires generating the query (profit 2050)

4. profit rule fires generating the query (revenues 2050)

5. etc.

This is a loop and it is a bad thing since it will simply continue until there
is no more memory available, then in the worst case, crash lisp. Luckily, SAL
can detect such loops if the argument to process loop-detect is set to TRUE
(cf. section 4.3.2 on page 10 for more information.)

This explanation should have made it clear that rules are fired when data is
needed, but is unavailable in the database.

You should now be ready and perhaps even anxious to learn to write a rule.

Where do Rules Come From?

Well by now the reader should have guess that the sal-config.lisp is the
source of all user configuration parameters. Let’s take a few moments to look
at how SAL uses that config data to find rules.

The basic idea is that a special attribute called “industry” must be available
to SAL. This is used for indirection to find which sets of rules should be applied.
These sets are defined by the configuration parameters:

• *sm-industry-rulefile-string-alist* is used to associate industries
with rule files,

August 23, 2006 doc.nw 25

• *sm-model-path-string* contains the path to the rule files.

The special alist key t points to the “default-rules” which are taken to apply
to all industries.

See section 11.1.2 on page 151 for more details on these and other configu-
ration parameters.

Writing a Simple Rule

Now let’s look at the rule writing process. We’ve seen that rules are used to
fill in missing information, or to project new data based on other data. Let’s
look back at the previous example: “Profit for a year is the difference between
revenues and costs for that year.”

In lisp, this is simply expressed by the following function:

(defun profit-rule (att date)

"This version returns the profit value as projected, but does not

save it to the database."

(declare (ignore att))

(values (- (revenues date) (costs date)) ; first value is the profit

t)) ; second indicates Projected.

This simple rule function satisfies the requirements and and does the job.
There are several points to recognize in this rule:

• the sugar functions revenues and costs were used to query the database
for their values for the year.

• we assumed that the values for revenues and costs will always be avail-
able! Imagine what would happen if either of those returned () . . .

• At this point the function profit-rule is known to lisp, but not to SAL.

We must still associate it with the attribute profit. There are two ways of
doing this:

• by means of sugar function rule association,

• by restructuring the definition in a call to defrule.

If the rule has already been defined as a lisp function, then the easiest so-
lution would be to use sugar function rule association. The following example
associates the function profit-rule with the attribute profit at precedence

value 20:

(profit :rule #’profit-rule :prec 20)

This works fine. No problem. But it requires two steps, thus leaving plenty
room for error. Would it be nice to be able to perform the definition of the

August 23, 2006 doc.nw 26

rule and the association to attributes, yes a rule may be associated with several
attributes, in a single statement? Well that is exactly the purpose of the SAL
function defrule which is available in the “RULE-FUNCS” package. Here’s
the profit rule reformulated into a defrule call, with protection for missing
revenues or costs data, exclusion of the case that the rule was called on the date
t (meaning on the always true value of profit which is obviously erroneous), and
with an embedded sugar function update call to write the computed value to
the internal database:

(in-package "RULE-FUNCS")

(defrule simple-profit ("Profit") 20 (un-used yr)

" profit = revenue - costs;

but is nil if either of the components is missing."

(declare (ignore un-used))

(if (not (numberp yr)) (values ()()) ; we exclude facts

(let* ((revenue (revenues yr))

(costs (costs yr))

(val (and revenue costs (- revenue costs))))

(if val (profit yr :project val)

(values ()())))))

So what’s all that about? First, what is the form of a defrule call?

(defrule <name>

<attribute-list>

<precedence>

<formal-parameters>

<body>)

What are the arguments to defrule?

<name> : this is simply the symbol-name as in the lisp function definition,

<attribute-list> : a list of strings which correspond exactly, including case,
to the attributes to which the rule is to be associated,

<precedence> : a number > 0, lower precedence values indicate earlier exe-
cution than higher values,

<formal-parameters> : there are two parameters, but &rest could be used
to group them into a single list,

<body> : the body as per any lisp function definition.

Now we can understand the defule call:

• We first move to the proper package: RULE-FUNCS.

August 23, 2006 doc.nw 27

• The first line says that a rule named simple-profit is to be associated
with the attribute ”Profit” at precedence 20; the formal parameters are
un-used and yr,

• we next tell lisp to ignore the formal un-used which won’t be used in the
function,

• continuing, if yr is not a number, then the rule was called with yr = t,
this case is not handled so we return nil nil,

• using sugar calls, we try to obtain values for revenues and costs corre-
sponding to the yr,

• the result val is the difference, but only if both revenues and costs are
not nil,

• if a result val was obtained, return the result of assigning it to profit for
the yr as projected,

• if not, return nil ;nil.

What have we learned so far? That defrule is the way to go for rule creation
and association. In a single call, a rule is defined and associated with proper
precedence to the selected attributes. Furthermore, the form of the defrule call
allows for many levels of abstraction to be applied. For example, suppose that
we would like to use a specific key value to indicate that a fact was projected in
specific circumstances. Also, we would like this to work for several attributes:
“CEO”, “DHR”, “CTO”. Here’s the code:

(in-package "RULE-FUNCS")

(defrule brother-in-law ("CEO" "DHR" "CTO") 20 (at yr)

"We assume the lack of data means that the

brother-in-law is the person doing the job.

"

(if (numberp yr) ; we exclude timely data

(values ()())

(apply-attribute-sugar at yr :project "the-brother-in-law")))

Here is the full trace from CMUCL:

* (in-package "RULE-FUNCS")

#<The RULE-FUNCS package, 23/40 internal, 13/21 external>

* (defrule brother-in-law ("CEO" "DHR" "CTO") 20 (at yr)

"We assume the lack of data means that the

brother-in-law is the person doing the job.

"

(if (numberp yr) ; we exclude timely data

August 23, 2006 doc.nw 28

(values ()())

(apply-attribute-sugar at yr :project "the-brother-in-law")))

#<Interpreted Function (LAMBDA (AT YR)

"We assume the lack of data means that the

brother-in-law is the person doing the job.

"

(IF # # #))

{5854B469}>

* (sgr:ceo ())

(#<Closure Over Function "DEFUN CREATE-SIMPLE-GET-DATA" {58C4B421}>

BROTHER-IN-LAW USE-PREVIOUS)

(BROTHER-IN-LAW)

* (sgr:ceo)

"the-brother-in-law"

T

* (sgr:dhr 2006)

"the-brother-in-law"

T

That should be clear and almost ends our exploration of the definition of
simple rules. Indeed, the attentive reader will have noticed that the last exam-
ple slipped in a little indirection on the attribute name by means of the func-
tion apply-attribute-sugar in the “SUGAR” package. Indeed, this func-
tion and its friends, attribute-sugar-function, and att-name-2-sugar-func

pave the way to writing generic rules.

Summary of Simple Rules

Simple rules are, well, simple. They are simply lisp functions that are associated
to attributes and called when the attribute’s value is needed but not available
in the database.

Rule functions have two formal arguments:

attribute : which will bind to a string that exactly matches the attribute’s
name,

date : which will bind to a number or t.

Rule functions can be associated to attributes in two manners:

• by sugarfunction: (sgr:profit :rule #’a-profit-rule :prec 30)

• by means of defrule: (defrule a-profit-rule ("Profit") 30 (at yr) ...).

August 23, 2006 doc.nw 29

The same rule function can be associated to several attributes, using either
of the above methods.

You now know all there is to know about simple rules!

4.3.8 How to Write a Generic (multi-attribute) Rule

At this point the reader knows how SAL looks for data, and how rules are fired
to provide that data. In this section we will explore the use of generic rules
that work on multiple attributes.

There are two types of generic association: explicit association with a set of
attributes and association with all attributes.

In the previous section we saw that rule functions can be associated to
attributes either by sugar calls or by means of defrule. Both of these methods
can be used to produce multi-attribute associations. However, only defrule

can perform association to all attributes. We will look at this first by means of
the example of the standard rule called use-previous. This rule says: For any
timely attribute, the value for the date d is simply the value for the date d − 1.

Here is the implementation:

(defrule use-previous (t) 100 (at yr)

"This rule says, if the previous year is not less

than the rist year of data, then use the previous year’s

attribute value for this year.

Careful, a year could be ’t’.

"

(if (not (numberp yr)) (values () ()) ; reject facts

(let* ((previous (1- yr))

(min-year *first-year-of-data*)

(val (and (>= previous min-year)

(apply-attribute-sugar at previous))))

(if val (apply-attribute-sugar at yr :project val)

(values () ())))))

Having read and understood all the previous How-To’s, this rule should read
like “see spot run.” Here’s how it works:

• the rule’s name is “use-previous”,

• it associates with the list (t), meaning all attributes,

• it’s precedence is 100, which means that it will only fire if all lower prece-
dence rules have failed to find a value,

• the first line of code filters out any calls on facts, i.e. returns failure values,
since this rule only applies to timely data,

• previous is bound to yr − 1,

• min-year is bound to the global value of the minimum date,

August 23, 2006 doc.nw 30

• the new val is bound to nil if the previous year is too early or if there is no
value for the attribute for the previous year. Note that the apply-attribute-sugar
call could provoke a recursive firing of the use-previous rule, and this is
proper behavior!

• finally, if the new value is not nil, then it is projected as the value for the
attribute for the year. The value of the call to apply-attribute-sugar

is the value returned by the rule,

• if the new value is nil, then return the failure values.

This should be clear to all. It is worth noting that the value of at is never
explicitly examined. That is indeed the semantics of a generic rule.

A generic rule may not be designed for all attributes, but a limited set. This
is accomplished by listing them explicitly in the second argument to defrule, or
by making a specific sugar call to associate the rule function with each attribute.

Funnily, generic rules are even simpler that simple rules!

4.4 Requirements

SAL’s requirements are both few and straightforward. They are detailed in the
following sections:

4.4.1 Functional Requirements

1. The application shall provide facilities to extrapolate data based on inputs
and computation functions,

2. Extrapolated (projected) data shall be segregated from input data,

3. Input data representation shall permit the expression of time dependent
and time independent data,

4. Bulk and individual data element loading shall be provided,

5. User interface shall provide functional style access to attribute values, e.g.
(profit 2001). This is only an example, final representation to be defined
in design,

6. Reporting shall provide csv output with columns as:
"Ticker","ID","Field","yr_2005","yr_2006",

7. Program shall be executable independently for each family of attributes,
i.e. data corresponding to different tickers shall not interact,

8. The application shall permit parallel execution on different data sets,

9. Projection facilities for new values for data shall be provided.

August 23, 2006 doc.nw 31

4.4.2 Standard Software Engineering Requirements

1. The application shall comply with the idioms of the programming language
used in the implementation: Lisp,

2. System installation and upgrading shall be feasible without detailed un-
derstanding of the programs,

3. Local user configuration shall be available to the user,

4. The application shall be fully documented such that its maintenance does
not depend on the presence of the original development team,

5. The application shall be based on state-of-the-art design principles avoid-
ing ad hoc solutions whenever possible. In particular, automated test
harnesses shall be provided.

4.5 Architecture

4.5.1 System Philosophy

The idea behind SAL is that of a backward chaining expert system shell. Data
is stored in memory and queries are handled by SQL-like look-up, calling on
rules to project missing data. Underlying support for recursion is provided by
Lisp, and maintained throughout the application.

4.5.2 System Structure

The SAL application comprises:

Internal Database : This is the core of the application, providing the under-
lying data representation and basic create, read and update functionality.
The internal database provides the lowest level of functionality and is in-
tended for internal use by the system itself. It is not intended to provide
end-user, or API level functionality.

Sugar Function : This layer relies on the previous one for data and provides
the user level querying and updating facility described in How-To’s. It
relies on rule functions to perform data extrapolation, i.e. projection.
Much of SAL’s internal code is written in sugar functions which are built
using the support provided by this module.

Rule Function : This small module provides support for the creation and
manipulation of the rule functions.

Top Level : The applicative interface sits here. This module performs the
loading and unloading of data and provides the processing and reporting
functionalities.

Chapter 5

Makefiles

This is the description of the Makefiles which are used to build and install
SAL.

There are two makefiles associated with the construction of SAL. The first,
Makefile.0, is used to build the second: Makefile. It is the second Makefile

which is used in the building, installing and testing of SAL. The second Makefile

is also used to build the SAL distribution archive.
The Makefile provided in the distribution of SAL is in fact Makefile.0

renamed to Makefile so as to enable the call to make with no arguments.
To build, install and test SAL, once the user configuration (cf. section 3 on

page 3) has been set-up, simply run the commands:

$ make

$ make

$ make examples # the example files are needed for the tests.

$ make install wut-test ids-test sugar-test sal-test

The first call to make uses the Makefile.0 to build the full Makefile. The
second call builds SAL and its documentation, the third installs the example
files which are needed to run the test suites, and the final call with the install
target, installs SAL and runs the unit tests (not mandatory).

To build a full distribution archive, execute the following command:

$ make dist

This will create a file sal.tgz in the current directory containing the full
archive, including any customizations that may have been made.

5.1 Makefile.0

Makefile.0 is the makefile used to build the final Makefile which is used to build
SAL. The content of Makefile.0 is described here since it is provided as the
only Makefile in the SAL distribution. This allows for a straightforward make

32

August 23, 2006 makefile.nw 33

process by anyone, without the need for the user to perform any noweb tangle
or weave commands.

Makefile.0 first defines the tangle and the emacs-commands (see below) it
will use and the files which will be the prerequisites.

33a 〈Makefile.0 33a〉≡ 33b ⊲

commands

TANGLE=notangle

〈emacs-commands 40c〉

#files:

NW_FILES= user-config.nw makefile.nw

Then, the target all is defined as depending on the noweb files defined above.
The actions required to make the main SAL Makefile are:

1. first backup the current copy of Makefile to Makefile.0,

2. then tangle out the real Makefile (note the use of the -t8 option which
converts eight spaces into a tab character, thus allowing the make utility
to find commands for building the targets). For those unfamiliar with
gnu make, the $^ symbol replaces the prerequisites, which in this case are
the noweb files, and the $@ symbol replaces the current target which is
Makefile at this point. Also the use of .PHONY ensures that the target
Makefile will always be built, even if a file exists of the same name which
is current with respect to the prerequisites,

3. and finally use emacs to clean up the newlines which are not properly
handled by noweb, it seems.

33b 〈Makefile.0 33a〉+≡ ⊳ 33a

targets:

.PHONY: Makefile

all: Makefile

Makefile: $(NW_FILES)

-cp $@ $@.0

$(TANGLE) -t8 -R$@ $^ > $@

$(EMACS_CMD) $@ $(EMACS_OPTS)

〈make-Makefile.0 33c〉

If for some reason the file makefile.nw is updated then Makefile.0 will need
to be tangled out of the makefile.nw file. The following make target will do
that. It is included in both makefiles.

33c 〈make-Makefile.0 33c〉≡ (33b 41)

Makefile.0: $(NW_FILES)

$(TANGLE) -t8 -R$@ $^ > $@

$(EMACS_CMD) $@ $(EMACS_OPTS)

August 23, 2006 makefile.nw 34

If it becomes necessary to manually extract Makefile.0 as Makefile from
makefile.nw, this is done by the following command:

$ notangle -t8 -RMakefile.0 makefile.nw > Makefile

After installation, a call to make with the target clean will remove all the
generated files, but only in the current directory, tangle Makefile.0 out of
makefile.nw, and copy it to Makefile.

5.2 The SAL Makefile

The SAL Makefile, like any makefile is composed of several parts: variable
definitions, high level targets and detailed or workhorse targets.

5.2.1 Variable Definitions

The variables used in the Makefile ensure that the command specifications em-
bedded in the targets can remain unchanged, even if programs, paths, etc. are
updated in the system or the build platform. Further unification and preserva-
tion against change is achieved by the shared use of noweb code chunks to isolate
user configuration to the single file user-config.nw (cf. chapter 3 on page 3).

34 〈makefile variables 34〉≡ (41)

user configuration parameters:

SAL_BIN_FILE=〈bin-file-path 3c〉sal.x86f
SAL_TEST_DATA_FILE=〈model-rule-path 3d〉data.lisp
SAL_CONFIG_PATH=〈configfile-path 3a〉
SAL_MAKE_INSTALL=sal-build:make-install "$(SAL_CONFIG_PATH)"

SAL_DIST_ARCHIVE=sal.tgz

commands:

WEAVE=noweave

WEAVE_OPTS=-autodefs lisp -delay -index

WEAVE_HTML_OPTS=-filter l2h -html

HTML_TOC=htmltoc -12345

TANGLE=notangle

LATEX=latex

DVIPDF=dvipdf

LISP_ENVT=export FINDUSES_LISP=1

LISP=〈lisp-path 4d〉

#files:

NW_FILES=opening.nw \

intro.nw \

user-config.nw \

doc.nw \

makefile.nw \

August 23, 2006 makefile.nw 35

sal.nw \

sugar.nw \

rule-funcs.nw \

internal-data-structure.nw \

utilities.nw \

sal-config.nw \

sal-build.nw \

closing.nw

CONFIG_FILE=sal-config.lisp

LISP_FILES=sal-build.lisp \

internal-data-structure.lisp \

$(CONFIG_FILE) \

sal.lisp \

sugar.lisp \

rule-funcs.lisp \

utilities.lisp

SAL_BUILD_FILE=sal-build.lisp

EXAMPLES_ARCHIVE=examples.tgz

DIST_DOC=sal.dvi README

DOC_FILES=$(DIST_DOC) sal.pdf sal.html

DIST_FILES=$(NW_FILES) $(EXAMPLES_ARCHIVE) $(DIST_DOC)

August 23, 2006 makefile.nw 36

5.2.2 High Level Targets

A Makefile should usually specify high level or abstract targets. These are often
things like all (the first and therefore the default target) or install. SAL’s
Makefile specifies quite a few:

The following targets may be of particular interest:

install: The install target has for prerequisite the abstract target code. The
command to build it is relatively straightforward. The lisp program shall
load the value of the variable in the SAL BUILD FILE, then evaluate
the lisp expression which after variable substitution produces ’(progn
(sal-build:make-install <path-to-config>) (quit)’. In other words,
load the file sal-build.lisp and execute make-install.

dist: This target has 3 abstract prerequisites and is used in building a distri-
bution archive.

clean: This PHONY target and has no prerequisites. As a PHONY, there
will be no checking to see if it is up to date, which makes sense since we
want to be able to execute the clean commands under all circumstances.
It simply deletes all the products and by-products of building the other
targets as well as Makefile.0. It then rebuilds Makefile.O and copies it
back to Makefile. The first call to make after a make clean, builds the
full Makefile. The second call can build genuine targets.

36 〈abstract-targets 36〉≡ (41)

all: code doc

install: code

$(LISP) -load $(SAL_BUILD_FILE) \

-eval ’(progn ($(SAL_MAKE_INSTALL)) (quit))’

cp $(CONFIG_FILE) $(SAL_CONFIG_PATH)

code: $(LISP_FILES)

doc: $(DOC_FILES)

dist: dist-files dist-build

.PHONY: clean

clean:

-rm -fv *.aux *.dvi *.html *.log *.pdf *.tex *.toc $(LISP_FILES)

-rm Makefile.0

$(MAKE) Makefile.0

cp Makefile.0 Makefile

August 23, 2006 makefile.nw 37

5.2.3 Workhorse Targets

A Makefile must have some targets that actually do the building. These are the
workhorses of the Makefile. Before looking at these in detail, it is necessary
that we understand the meaning of some special symbols in the gnu make syntax.
These are more fully documented in the GNU Make Manual.

% in target or prerequisite spec.: The % wild-card is similar to * on the
Linux command line. It will match any name. Once it has been matched,
that same name will replace all instances of % in either targets or prereq-
uisites. So, a rule starting like:

%.x86f: %.lisp %-build.lisp

would mean that a target such as toto.x86f will depend on the prerequi-
sites toto.lisp toto-build.lisp.

$* in the command spec.: This pattern matches the expression that has
previously been bound to a % symbol. In the previous example, this would
bind to toto. This pattern can be used anywhere in the command line.

$@ in the command spec.: The $@ pattern matches the current build target.
In the previous example, $@ would match toto.x86f. This pattern can be
used anywhere in the command line.

$< in the command spec.: The $< pattern matches the 1st of the current
build prerequisites. In the previous example, $< would match toto.lisp.
This pattern can be used anywhere in the command line. It will only
match the single first name in the prerequisites.

$^ in the command spec.: The $^ pattern matches the entire list of current
build prerequisites. In the previous example, $^ would match toto.lisp

toto-build.lisp. This pattern can be used anywhere in the command
line. It should be noted that this pattern will match more than one file
name, as is the case in the rule for the target %.tex.

The following targets may be of particular interest:

%.pdf: This very simple target says: “To make a pdf file, the corresponding
dvi must be up to date, then to build it run the DVIPDF command on
the dvi file.” A similar target exists for dvi targets.

37 〈detailed-targets 37〉≡ (41) 38a ⊲

%.pdf: %.dvi

$(DVIPDF) $<

August 23, 2006 makefile.nw 38

%.dvi: Again a very simple target. Note that the LATEXcommand is run three
times so as to ensure that all cross references are resolved.

38a 〈detailed-targets 37〉+≡ (41) ⊳ 37 38b ⊲

%.dvi: %.tex

$(LATEX) $<; $(LATEX) $<; $(LATEX) $<

%.tex: This target depends on the noweb files being up to date. Building it is
done in two parts. First the LISP ENVT is created. Then, following a
semi-colon which ensures that the next command will be executed in the
same shell, we weave the prerequisite noweb files into the tex target.

38b 〈detailed-targets 37〉+≡ (41) ⊳ 38a 38c ⊲

%.tex: $(NW_FILES)

$(LISP_ENVT); $(WEAVE) $(WEAVE_OPTS) $^ > $@

%.html: This is similar to the previous with the additional step that the output
from weaving is piped through an html table-of-contents filter before being
directed to the html target.

38c 〈detailed-targets 37〉+≡ (41) ⊳ 38b 38d ⊲

%.html: $(NW_FILES)

$(LISP_ENVT); \

$(WEAVE) $(WEAVE_OPTS) $(WEAVE_HTML_OPTS) $^ | $(HTML_TOC) > $@

LISP FILES: This is again similar to the previous targets. The main differ-
ence is that we are now tangling i.e. building code. The argument to the
-R option of notangle indicates which code chunk should be taken as the
root to be used to build the target. In this rule, the $@ argument is the
name of the lisp file target. This is the convention that has been used in
the noweb sources: “root chunks have the name of the target file.” The
second line of commands is a call to emacs in batch mode which fixes the
newlines generated by noweb.

38d 〈detailed-targets 37〉+≡ (41) ⊳ 38c 39a ⊲

$(LISP_FILES): $(NW_FILES)

$(TANGLE) -R$@ $^ > $@

$(EMACS_CMD) $@ $(EMACS_OPTS)

August 23, 2006 makefile.nw 39

%-test: This is a different type of target than the previous ones in that it
doesn’t build anything. Its prerequisites are the lisp files. The commands
simply load sal and the test data into lisp, then run the corresponding
test harness by a call to the test function in utilities.lisp, and exit
the lisp environment.

39a 〈detailed-targets 37〉+≡ (41) ⊳ 38d 39b ⊲

%-test: $(LISP_FILES)

$(LISP) -load $(SAL_BIN_FILE) \

-load $(SAL_TEST_DATA_FILE) \

-eval ’(progn (wut:test "$*") (quit))’

%-test-no-quit: This is slight variation of the previous. The only difference is
that the lisp environment is not closed after running the test.

39b 〈detailed-targets 37〉+≡ (41) ⊳ 39a 39c ⊲

%-test-no-quit: $(LISP_FILES)

$(LISP) -load $(SAL_BIN_FILE) \

-load $(SAL_TEST_DATA_FILE) \

-eval ’(wut:test "$*")’

examples: This target unpacks example rule, model, and data files to the
Examples subdirectory of the binaries directory.

39c 〈detailed-targets 37〉+≡ (41) ⊳ 39b 39d ⊲

examples: $(EXAMPLES_ARCHIVE)

tar xvfz $< -C 〈bin-file-path 3c〉

dist-files: This is the target that will make a clean build of all the files in
preparation for the creation of a distribution archive.

39d 〈detailed-targets 37〉+≡ (41) ⊳ 39c 40a ⊲

dist-files:

-$(MAKE) clean

$(MAKE)

$(MAKE)

August 23, 2006 makefile.nw 40

dist-build: This will create the distribution archive. First is checks that the
DIST FILES and EXAMPLES ARCHIVE are available. It then cre-
ates a temporary directory, copies the files there, makes a gzip archive of
them, and moves that archive back to the current directory. Finally, it
removes the temporary directory.

40a 〈detailed-targets 37〉+≡ (41) ⊳ 39d 40b ⊲

dist-build: $(DIST_FILES) $(EXAMPLES_ARCHIVE)

-mkdir /tmp/Build

-rm -vf /tmp/Build/*

cp Makefile.0 /tmp/Build/Makefile

cp $^ /tmp/Build

cd /tmp/Build; tar -cvzf $(SAL_DIST_ARCHIVE) *

mv /tmp/Build/$(SAL_DIST_ARCHIVE) .

-rm -rfv /tmp/Build

dist-clean: This is used to clean up the distribution archive in the event that
it was incorrectly built.

40b 〈detailed-targets 37〉+≡ (41) ⊳ 40a

.PHONY: dist-clean

dist-clean:

-rm -vf /tmp/Build/*

-rm -fv $(SAL_DIST_ARCHIVE)

5.3 Makefile Utilities

The following emacs variables assemble to make an emacs command that re-
places the noweb inserted <CR> by a proper Linux newline. Although the differ-
ence between newline and <CR> is not generally significant, there are particular
circumstances, such as in file names, where it is important.

40c 〈emacs-commands 40c〉≡ (33a 41)

emacs commands to replace the CR by proper Linux newline

EMACS_EXPR1=’(replace-string "\r" "" nil nil nil)’

EMACS_CMD=emacs -q --no-site-file -batch

EMACS_OPTS=--eval=$(EMACS_EXPR1) -f save-buffer

August 23, 2006 makefile.nw 41

5.4 Physical Layout of the File

The the physical layout of the file is simply the juxtaposition of the the above
defined elements:

41 〈Makefile 41〉≡
〈makefile variables 34〉
〈emacs-commands 40c〉
〈abstract-targets 36〉
〈detailed-targets 37〉
〈make-Makefile.0 33c〉

5.5 Makefile History

2006 03 11: GF update to make install sal.

2006 03 12: GF update to add paths for sal installation. added command to
fix the newlines in the lisp output.

2006 03 14: GF created the noweb version of this file.

2006 03 15: GF update to add automated testing.

2006 03 16: GF draft version of descriptive text completed. Some minor up-
dates to streamline and homogenize the code.

2006 05 23: GF added headings “-12345” option to HTML TOC command to
enable generation of all headers in the HTML document table of contents.

2006 03 31: GF added “test-no-quit” targets to allow the user to visit the lisp
envt. after running test harnesses.

2006 05 30: GF changed code mode to Makefile-mode.

2006 05 31: GF updated to include making of the distribution archive.

2006 06 07: GF update after final review.

Chapter 6

SAL: The Top level

This is a description of the top level API to SAL. It is provided as a lisp source
file sal.lisp generated from the literate file sal.nw.

We will examine the functionality provided in this file following the order of
use, not the layout of the file itself.

6.1 The SAL Package

The SAL package is the starting point for all SAL’s functionality. Loading this
package loads all the other packages and initializes the system. The package
itself provides the functionality as per the following definition:

42a 〈sal-package 42a〉≡ (59)

(defpackage "SAL"

;; provide a package to encapsulate the database functionality

(:use "COMMON-LISP")

(:export "REPORT"

"PROCESS"

))

(in-package "SAL")

As can be seen, there are only two exported symbols in the SAL package.
These are all functions and are described below.

6.2 API Functionality

The SAL API provides two services. A general processing service and a special-
ized reporting service.

42b 〈sal-api 42b〉≡ (59)

〈report 47a〉
〈process 43a〉

42

August 23, 2006 sal.nw 43

6.2.1 process (<args>)

This function is the main api call provided by SAL. It performs all loading,
initialization, input and output for automated processing. A very detailed ex-
planation of the use of this function is provided in the How-To in chapter 4.3.2
on page 10.

Arguments: The arguments are fully described in the How-To.
Return:

• The resulting internal database is returned if processing is successful.

• In case of failure, an error is logged and nil is returned.

The function process looks like this:

43a 〈process 43a〉≡ (42b)

〈sal:process-arg-def 12〉
〈sal:process-body 43b〉

We’ll now look at what happens during the execution of the body of process.
Firstly, a call to log-it is used to log a start of processing message.

43b 〈sal:process-body 43b〉≡ (43a) 44 ⊲

(wut:log-it

(format nil "Sal-Process: processing ticker: ~S" ticker-string)

logging)

August 23, 2006 sal.nw 44

Then, wrapped in an unwind-protect is a let which does it all:

1. The local variable db is initialized by a call to init-sugar, which also
initializes the sugar functions module,

2. The rule functions module is initialized with a call to its initialization
function rf:init.

3. A datum is defined to ensure that there is a default value for the “INDUS-
TRY” attribute,

4. defdata is called with the data argument, loading all the data, but skip-
ping any invalid elements. If no valid data is loaded, then an error is raised
and the unwind-protect will step in to execute a log-it before exiting,

5. The file indicated in the mdl-path argument is loaded,

6. The rules are loaded via a call to load-rules,

7. If a report-start and report-stop date have been provided as arguments,
then the function set-up-and-report is called. This does just what its
names says: set-up for report generation and generate,

8. Finally, the end of processing is logged.

9. At the end of the function, we see that in case of error in the let, unwind-
protect will execute a logging call before returning nil.

So we see that a whole lot of functionality is hidden away in the embedded
calls. How does it really work? Well just as we said, most of the work is
handled in the initialization of the component modules. This includes, creating
and populating the internal database with data and rules. Once that is done,
all that remains is to perform the queries required to get the reports.

It’s a simple as that!

44 〈sal:process-body 43b〉+≡ (43a) ⊳ 43b

(unwind-protect

(let ((db (sgr:init-sugar ticker-string

current-year

:loop-detect loop-detect)))

(rf:init db)

;; create a default industry, just in case!

(rf:defdata

(list "INDUSTRY" (cfg-pkg-name-eval "*sm-default-industry*")))

(when (zerop (rf:defdata data))

(error "Sal-Process: no data to load!~%Data is: ~S" data))

(load mdl-path :verbose verbose :print verbose)

(load-rules :verbose verbose)

(when (and report-start report-stop)

(set-up-and-report db report-start report-stop

std-out file-out out-file-name))

August 23, 2006 sal.nw 45

(wut:log-it

(format nil

"Sal-Process: processing completed! ticker: ~S"

ticker-string)

nil)

db)

(wut:log-it

(format nil "Sal-Process: Processing Failed! ticker: ~S" ticker-string))

()))

August 23, 2006 sal.nw 46

6.2.2 report (<args>)

Arguments:

:start first year to report,

:stop last year to report,

:att-lis a list of strings containing the attributes to report,

:o-stream-lis is a list of open streams for writing, defaults to (t), meaning
std-out. Output will be written to all the streams in the list.

Return:

t .

This function reports to a stream previously opened for writing. The report
format is line-based and comma-separated. The first line contains headers.
Each of the lines following the header contains the values that correspond to
the headers.

The following example illustrates a report. Suppose that we have loaded
attributes for the stock “IBM”, with ID value “123”. Suppose that report is
called with the arguments:

:start = 2005

:stop = 2006,

:att-lis = ("Profit "Losses")

The following output would be sent to std-out (this is the default value for
the output stream argument):

"Ticker","ID","Attrbiute",yr_2005,yr_2006

"IBM",123,"Profit",1000,20000

"IBM",123,"Losses",500,3000

The function report is relatively simple to understand. It is based on map-
ping output production over the output streams. It relies on a helper functions
report-header to create the header line and report-line in collaboration with
the well known sugar function queries to build the output data lines. The rest
is just straight Lisp.

Here’s a run though:

1. First, if there are no output streams, do nothing.

2. If there are outputs streams, then create the header line and map it via a
format statement to all the output streams,

3. then, for each attribute, do the same mapping for the report-lines created
by feeding a sugar query for the ticker to report-line. The embedded
call to report-line performs the sugar query for the attribute values on
[start, stop],

August 23, 2006 sal.nw 47

4. last of all, close all the out-streams that are not std-out,

5. and return t.

47a 〈report 47a〉≡ (42b)

(defun report (&key start stop att-lis (o-stream-lis (list t)))

;;(when sal-trace

;;(format t "sal:report: att-lis: ~S~%" att-lis)

;;(break))

(if o-stream-lis

(progn

(let ((header (report-header start stop)))

(mapc #’(lambda(o-stream)

(format o-stream header))

o-stream-lis))

(mapc

#’(lambda(att)

(let ((line

(report-line start

stop

(sgr:apply-attribute-sugar "TICKER")

att)))

(mapc #’(lambda(o-stream)

(format o-stream line))

o-stream-lis)))

att-lis)

(mapc #’(lambda(o-stream)

(when (not (eq o-stream t))

(close o-stream)))

o-stream-lis))

t))

6.3 API Helper Functions

These functions provide the first level of support to SAL’s API. They are phys-
ically organized as per the following chunk.

47b 〈api-helpers 47b〉≡ (59)

〈report-reduce-helper 51a〉
〈report-header 49〉
〈report-line 50〉
〈set-up-and-report 48〉

August 23, 2006 sal.nw 48

They will be described in the hierarchical order in which they are called.

6.3.1 set-up-and-report (<args>)

Arguments:

db : an internal database,

report-start : report start date as absolute year,

report-stop : report stop date as absolute year,

std-out : boolean if TRUE report to std out

file-out :boolean if TRUE report to file out

out-file-name : file name as string for file output, note: “.csv” will be ap-
pended to the name.

Return:

t the result of the call to report.

This function does the preparation needed to call report. It simply sets up
the call with the information provided by process. It assumes that both report-
start and report-stop are valid numbers, absolute year values. No checking is
performed.

There are a some things worth noting in the body of this function.

1. The first is the call to the get-model-attributes. This function, pro-
vided by the internal-database package returns the current list of model-
attributes. The keyword argument :report? allows for the selection of
reporting attributes or all of the model attributes.

2. The second is the construction of the file output stream. The name is
built either from the supplied argument out-file-name if provided, or if
not provided by the creation of a name using the ticker string. For exam-
ple, if the ticker were “IBM”, then the out-file-name would be IBM.csv.
Remember, the out-file-name argument is always used if provided.

3. Finally, one should note that all file writing is done according to the con-
figuration parameter *io-output-path-string*.

48 〈set-up-and-report 48〉≡ (47b)

(defun set-up-and-report (db report-start report-stop std-out file-out

out-file-name)

(report :start report-start

:stop report-stop

:att-lis

(ids:get-model-attributes :ht db :report? t)

:o-stream-lis

August 23, 2006 sal.nw 49

(append (when std-out

(list t))

(when file-out

(list (wut:out-stream

:file-name-string

(concatenate

’string

(or out-file-name

(sgr:apply-attribute-sugar "TICKER"))

".csv")

:path-string

(cfg-pkg-name-eval "*io-output-path-string*")))))))

6.3.2 report-header (start stop)

This function builds and returns the report header for use by report function.
Arguments:

1. start year for report as number,

2. stop year for report as number.

Return multiple values:

• A string containing the official report headers:
Ticker, ID, Field, yr 1, yr 2, . . .

49 〈report-header 49〉≡ (47b)

(defun report-header(start stop)

(concatenate ’string

"\"Ticker\",\"ID\",\"Field\","

(if (= start stop)

(format nil "\"yr_~A\"" start)

(reduce #’(lambda(l r)

(multiple-value-bind

(fix-l fix-r)

(report-reduce-helper l r)

(format nil "~A,\"~A\"" fix-l fix-r)))

(wut:numlist start stop)))

"~%"))

August 23, 2006 sal.nw 50

6.3.3 report-line (start stop ticker att)

This function builds and returns the report lines for use by report function.
Arguments:

1. start year for report as number,

2. stop year for report as number.

3. ticker as string

4. attribute as string

Return multiple values:

• A string containing the line:
ticker-value, ID-value, att-name, att-val-1, att-val-2, . . .

50 〈report-line 50〉≡ (47b)

(defun report-line(start stop ticker att)

(concatenate ’string

;; ticker,id,att-name

(format nil "~S,~S,~S,"

ticker

(rational (sgr:apply-attribute-sugar "ID"))

att)

;; val-1,val-2...

(if (= start stop)

;; only one val, don’t use reduce!

(format nil "~F"

(car

(sgr:apply-attribute-sugar att

start

stop)))

;; at least 2 vals, use reduce to make list

(reduce #’(lambda(l r)

(format nil "~F,~F" l r))

(sgr:apply-attribute-sugar att

start

stop)))

"~%"))

August 23, 2006 sal.nw 51

6.3.4 report-reduce-helper (l r)

This function is used as support for a call to reduce. It assumes that the
arguments will be such that at least the second is a number. It will return
appropriate values for header columns, i.e. “some string” and “yr NNNN”.

Arguments:

1. any lisp object, but only a string or a number is appropriate,

2. any lisp object, but only a number is appropriate.

Return multiple values:

1. if first argument was a number, “yr NNNN”, if not the argument is re-
turned,

2. the second argument prepended with “yr ”.

51a 〈report-reduce-helper 51a〉≡ (47b)

(defun report-reduce-helper (l r)

"takes the arguments give by reduce and fixes them with yr_.

Returns 2 values"

(let ((fixed-l (if (numberp l) (format nil "\"yr_~A\"" l) l))

(fixed-r (format nil "yr_~A" r)))

(values fixed-l fixed-r)))

6.4 Local Loading Utility Functions

These functions and commands provide loading support to SAL. They are phys-
ically organized as per the following chunk.

51b 〈sal-loading-utils 51b〉≡ (59)

〈load-sal 52〉
〈call-load-sal 53a〉
〈src-name-2-bin-name 56b〉
〈path-bin-it 56a〉
〈key-2-pathname-lis 55〉
〈load-rules-helper 54〉
〈load-rules 53b〉

August 23, 2006 sal.nw 52

They will be described in the hierarchical order in which they are called.

6.4.1 load-sal (cfg-pathname &key (verbose t))

This function loads all the compiled SAL files as per the config path.
Arguments:

1. Full pathname object, NOT the STRING path, to the config file,

2. verbose: if TRUE, load verbosely, otherwise load silently.

Return:

• The list of file-names of the files loaded.

The body of this function performs the following operations:

1. load the config file to gain access to the various configuration information
needed to proceed,

2. in a let*, first obtain the list of source file names. It is of note that the
function cfg-pkg-name-eval is used to translate a string into the value of
the variable named by the string. This technique is used to avoid reference
to unknown packages when the sal source or binary file is first loaded.

3. next, the compiled file-names are built from the source file-names, exclud-
ing “sal” and “sal-build” which are not needed,

4. once the binary file-names are available, the function load is simply mapped
over them passing the variable verbose twice, to get either really verbose
or really silent output.

52 〈load-sal 52〉≡ (51b)

(defun load-sal(cfg-pathname

&key

(verbose t))

(load-config cfg-pathname)

(let* ((src-name-lis (cfg-pkg-name-eval "*bi-src-filename-string-list*"))

(compiled-file-names

(mapcar #’(lambda(src-name)

;; find ’.’ replace after with bin extension

;; src-name

(concatenate

’string

(subseq src-name 0 (search ".lisp" src-name))

(cfg-pkg-name-eval "*bi-bin-extension-string*")))

(remove "sal.lisp"

(remove "sal-build.lisp"

src-name-lis

:test #’equal)

:test #’equal))))

August 23, 2006 sal.nw 53

(mapc #’(lambda(f-name)

(load (pathname

(concatenate

’string

(cfg-pkg-name-eval "*bi-sys-path-string*")

f-name))

:verbose verbose

:print verbose))

compiled-file-names)))

After defining the function load-sal we call it directly from the top level of
the file. As the file “sal” is read into lisp, when it reaches this point, it performs
this call, and loads all of the SAL files.

53a 〈call-load-sal 53a〉≡ (51b)

;;; this loads it all!

(load-sal (pathname "〈configfile-path 3a〉") :verbose t)

6.4.2 load-rules (&key (verbose t))

This function loads the default rules, then applies sgr:industry to get the
industry specific rules and loads them. All other data comes from config.

Arguments:

verbose: if TRUE, load verbosely, otherwise load silently.

Return:

• List or pathnames of specific rule files loaded if success,

• nil if failure to find industry specific rule files, defaults should always load!

53b 〈load-rules 53b〉≡ (51b)

(defun load-rules (&key (verbose t))

;; load the default rules

(load-rules-helper t :verbose verbose)

;; get and load the industry specific rules, if there are any...

(let ((ind (sgr:apply-attribute-sugar "INDUSTRY")))

(if ind

(load-rules-helper ind :verbose verbose)

(wut:log-it (format nil "No rules for industry: ~S" ind)))))

August 23, 2006 sal.nw 54

6.4.3 load-rules-helper (key &key verbose)

This function loads the rule-file associated with key. It uses the config to find
the rest of the data needed to perform the load. Loading and loaded filenames
are sent to log.

Arguments:

1. a string that will be used as key to lookup the rule-file names in the config
data,

2. verbose: if TRUE, load verbosely, otherwise load silently.

Return:

• A list of pathname objects if success,

• NIL if failure.

The body of this function performs the following operations:

1. Set up a let to get the list of pathname objects corresponding to rule-files
that are associated with the argument key,

2. Map over the list, loading each file, logging as we go,

3. If there are no rules to load, this is logged, too.

54 〈load-rules-helper 54〉≡ (51b)

(defun load-rules-helper (key &key verbose)

(let ((pathname-lis

(key-2-pathname-lis key

(cfg-pkg-name-eval

"*sm-industry-rulefile-string-alist*")

(cfg-pkg-name-eval "*sm-model-path-string*"))))

;;(when sal-trace

;;(format t "pathname-lis: ~S~%" pathname-lis)

;;(break))

(if pathname-lis (mapc #’(lambda(path)

(wut:log-it

(format nil

"load-rules-helper: loading: ~S"

path))

(load path :verbose verbose :print verbose))

pathname-lis)

(wut:log-it (format nil "No rule-file for key: ~S" key))))))

August 23, 2006 sal.nw 55

6.4.4 key-2-pathname-lis (key a-lis path-string)

This function returns a list of pathnames for binary files as associated to key in
a-lis. The a-lis values are source file names. These names are manipulated by
the function so as to return binary filenames. All arguments must have types,
i.e. STRING, that correspond correctly to those of a-lis.

Arguments:

1. a key as a string,

2. an a-lis such that key is string or list of strings, values are string or list of
strings that correspond to file-names with .lisp extensions.

3. A string representation of a path to the file.

Return:

• if an assoc is found, A list of pathname objects resulting from the con-
catenation of the path-string and the file-name with bin extension.

• if not, nil.

55 〈key-2-pathname-lis 55〉≡ (51b)

(defun key-2-pathname-lis (key a-lis path-string)

(let ((res (cdr (wut:s-assoc key a-lis))))

;;(when sal-trace

;;(format t "key lookup: ~S~%" res)

;;(break))

(if (null res) ()

(path-bin-it :file-or-lis res

:path-string path-string)))))

August 23, 2006 sal.nw 56

6.4.5 path-bin-it (&key file-or-lis path-string)

This function returns a list of pathnames to binary files as built from the argu-
ments and from config data.

Arguments:

file-or-lis a string or list of strings taken to be file-name.something, NOTE
only the dot “.” counts for the concatenation of the bin extension,

path-string a string path.

Return:

• list of pathnames with binary extensions.

The body of this function performs the following operations:

1. If called with list of files, then map a recursive call over each of them,

2. Otherwise, build and return a list of the binary filenames

56a 〈path-bin-it 56a〉≡ (51b)

(defun path-bin-it (&key file-or-lis path-string)

(if (listp file-or-lis)

(mapcan #’(lambda(file-name)

(path-bin-it :file-or-lis file-name

:path-string path-string))

file-or-lis)

(list

(wut:path-get

(src-name-2-bin-name file-or-lis

".lisp")

path-string))))

6.4.6 src-name-2-bin-name (src-name bin-ext)

This function returns the “name.lisp” changed to “name.bin-ext”.
Arguments:

1. a string file name of form xxxx.yyy,

2. a string NOT including the “.” to be concatenated at the end.

Return:

• The string “name.bin-ext”.

56b 〈src-name-2-bin-name 56b〉≡ (51b)

(defun src-name-2-bin-name (src-name bin-ext)

(concatenate ’string

(subseq src-name 0 (position #\. src-name))

bin-ext))

August 23, 2006 sal.nw 57

6.4.7 Misc.

The following dummy package definitions are needed to ensure that SAL can
pass an initial parse before the real definitions of its required packages are
available.

57 〈loading-astuces 57〉≡ (59)

(defpackage "SAL-CONFIG"

(:nicknames "SAL-CFG"))

(defpackage "WIG-UTIL"

(:nicknames "WUT"))

(defpackage "SUGAR"

(:nicknames "SGR"))

August 23, 2006 sal.nw 58

6.5 Test Harness

58a 〈sal-test-harness 58a〉≡ (59)

(defparameter *c-c-alis* ())

(setf *c-c-alis*

’(("Go for an analysis on [2005 2010],

verbose,

print to std-out"

.

"(format t \"~S~%\" (sal:process :ticker-string \"ibm\"

:current-year 2006

:verbose t

:data *ibm-data*

:report-start 2005

:report-stop 2010

:std-out t

:file-out t

:out-file-name \"this-is-output\"

:logging t

:loop-detect t))")

("Go for an analysis on [2005 2010],

NOT verbose, using default current-year

print to std-out"

.

"(format t \"~S~%\" (sal:process :ticker-string \"ibm\"

:verbose nil

:data *ibm-data*

:report-start 2005

:report-stop 2010

:std-out t

:file-out nil

:logging t

:loop-detect t))")

))

The following items are included to make loading and testing of SAL easier
during debugging.

58b 〈sal-debugging-helpers 58b〉≡ (59)

;;; helper comments to ease loading!

;(load "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/V6.9.1/sal.lisp")

;(load "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/Examples/data.lisp")

;(load "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/bin/sal.fas")

;(load "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/bin/sal.x86f")

;;(defparameter sal-trace ())

August 23, 2006 sal.nw 59

6.6 Physical Layout of the File

The package is ordered as per the following:

59 〈sal.lisp 59〉≡
;;; sal.lisp

〈lisp-header 143b〉
〈sal-debugging-helpers 58b〉
〈loading-astuces 57〉
〈sal-package 42a〉
〈load-config 155〉
〈cfg-pkg-name-eval 130a〉
〈sal-loading-utils 51b〉
〈api-helpers 47b〉
〈sal-api 42b〉
〈eoc 143c〉
〈sal-test-harness 58a〉
〈eof 144〉

August 23, 2006 sal.nw 60

6.7 Sal Package History

2006 01 23: GF creation of the file.

2006 01 24: GF creation of load-config, make-install, sal.

2006 01 29: GF first working version!

2006 02 01: GF made the test harness *C-C-ALIS* private to the SAL pack-
age.

2006 02 03: GF minor updates after code-review. add check for empty data
loading. update to add logging control argument to sal:process. prepara-
tion for tests of loading compiled rules.

2006 02 06: GF update to add :print verbose argument to all load commands.

2006 02 07: GF update process arguments to support call to init-sugar for
loop detection. Commented out all tracing. Added dummy package defs
for WIG-UTIL and SGR to satisfy the CMUCL compiler...

2006 02 08: GF modify key-2-pathname-lis to use wut:s-assoc instead of ordi-
nary assoc; this implements multiple industry ¡-¿ rule-file associations.

2006 02 09: GF update process, report to remove ticker argument to report,
creation of set-up-and-report to clean up process and report which is made
more efficient. Suppression of all reference to dbs, since this is an obsolete
concept.

2006 02 09: GF update process & set-up-and-report to add out-file-name ar-
gument. corrected load-rules to log message BEFORE loading begins, not
AFTER it is complete.

2006 03 12: GF update to make configfile pathname argument to load-sal, and
to eliminate the need for preloading of sal-config file.

2006 03 30: GF correct report-reduce-helper and report-header so that yr 2005
will appear as “yr 2005”. thus all the strings are output enclosed in double
quotes.

2006 05 01: GF remove unused *sal-startup-message* *sal-help-message*

2006 05 03: GF change the last call to log-it in sal:process to not specify sec-
ond argument, thus allowing logging to continue as it was.

2006 05 07: GF Remove ”SET-UP-AND-REPORT” from the public interface.
This should have been done long ago; the function is not needed by a user.

Chapter 7

The Sugar Functionality

The sugar functionality is the architectural heart of SAL. Nearly all user level
functionality is built upon it. For memory, we call sugar function the syntactic
sugar that allows the user to write:

(profit -1)

when he is really saying:

select profit

from data-table

where profit.year = (1- current-year).

In other words, sugar functions encapsulate database queries.
But where do they come from? Where are they stored? How do they work?

Where do they go when no longer needed?
Oh so many questions, and so few answers . . .
Before we try to answer, let’s look at the structure of the Sugar package.

7.1 The SUGAR Package

The SUGAR package provides functionality as per the following definition:

61 〈sugar-package-def 61〉≡ (98b)

;; provide a package to encapsulate the sugar functions.

(defpackage "SUGAR"

;; this pkg will access std lisp functions, only.

(:use "COMMON-LISP")

(:nicknames "SGR")

(:export "SUGAR-FUNCTION-NAME"

"SUGAR-FUNCTION-SYMBOL"

"ATTRIBUTE-SUGAR-FUNCTION"

61

August 23, 2006 sugar.nw 62

"APPLY-ATTRIBUTE-SUGAR"

"ATT-NAME-2-SUGAR-FUNC"

"INDUSTRY"

"INIT-SUGAR"

"MODEL-ATTRIBUTES"

))

(in-package "SGR")

August 23, 2006 sugar.nw 63

As can be seen above, the Sugar package offers quite a few public symbols.
We’ll look at them all in due time.

7.2 Where do Sugar Functions come from?

Since a sugar function is needed for each attribute in the system, the system
creates a sugar function each time it meets a new attribute. This happens each
time an attribute is introduced to SAL by means of defdatum, defmodel or
defreport. Each of these functions embeds a call to att-name-2-sugar-func.
This is the entry point for the creation of sugar functions.

7.2.1 att-name-2-sugar-func (att-name db &optional current-
year)

This function is called each time SAL is looking for the sugar function that
is associated with the attribute named in the first argument. The function
will always return the corresponding #’function. It uses delegation to per-
form the actual work. If the attribute is already known, then a call is made
to attribute-sugar-function which returns the sugar function requested.
If the attribute is unknown, then a sugar function is created by a call to
create-sugar-function.

One may take note that this function accepts the special attribute names t
and nil. Indeed, t is special in that it first translates into the string “MODEL-
ATTRIBUTES” with the obvious signification. The special attribute nil trans-
lates into the string “GENERAL-RULES”. These are further discussed as they
appear in the code below.

Arguments:

1. the attribute name as a string, or a special attribute name: t or nil,

2. an internal database containing all known data,

3. optional current year needed in case of sugar function creation.

Return:

• The #’sugar-function. If this function ever returns nil then there is a
serious problem with the database or data itself.

63 〈att-name-2-sugar-func 63〉≡ (98c)

(defun att-name-2-sugar-func (att-name db &optional current-year)

;; if att-name is a member of the keys, or of the model attributes,

;; then the corresponding sugar function should exist.

(if (or (member att-name

(ids:get-keys db)

:test #’equal)

(member att-name

(ids:get-model-attributes :ht db)

August 23, 2006 sugar.nw 64

:test #’equal))

(attribute-sugar-function att-name)

(create-sugar-function att-name db current-year)))

If an attribute is already known to SAL, then finding its sugar function
based on its string name is performed by attribute-sugar-function:

7.2.2 attribute-sugar-function (att-str)

This function will return the #’sugar-function corresponding to the argument.
If there is no such function then nil will be returned. The value of the argument
is not used directly, it is first used to find the sugar-function-symbol which
is in turn used to find the sugar function.

Arguments:

1. the attribute name as a string, or a special attribute name: t or nil,

Return:

• The #’sugar-function or nil if not found.

64a 〈attribute-sugar-function 64a〉≡ (98c)

(defun attribute-sugar-function (att-str)

(let ((sym (sugar-function-symbol att-str)))

(if sym (symbol-function sym)

())))

The next part of the indirection on the attribute’s name is described in the
following section.

7.2.3 sugar-function-symbol (obj)

This function takes the lisp object provided as argument and looks up the symbol
in the “SUGAR” package that corresponds to the sugar-function-name of the
object. The argument can be a string, t, or nil. There is no creation of sugar if
the function is missing. In the latter case nil is returned.

Arguments:

1. an object that could be a string, t or nil,

Return:

• The symbol corresponding to the function, or nil if not found.

64b 〈sugar-function-symbol 64b〉≡ (98c)

(defun sugar-function-symbol (obj)

(find-symbol (sugar-function-name obj) "SUGAR"))

August 23, 2006 sugar.nw 65

7.2.4 sugar-function-name (obj)

This function takes an object that can be t, nil or a string such as “Free Cash
Flow” and returns a new string such as “FREE-CASH-FLOW” removing all
leading space and multiple space before replacing single space by “-” and con-
verting all characters to uppercase.

In the case of t the string returned is “MODEL-ATTRIBUTES” and in the
case of nil is “GENERAL-RULES” is returned.

Strings with embedded hyphens “-” will be rejected and an error will be
signaled.

Arguments:

1. an object that could be a string, t or nil.

Return:

• The string corresponding to the sugar function name of the object.

65 〈sugar-function-name 65〉≡ (98c)

(defun sugar-function-name (obj)

(cond

((null obj) "GENERAL-RULES")

((eq t obj) "MODEL-ATTRIBUTES")

((or (not (stringp obj))

(find #\- obj))

(error "sugar-function-name: Cannot make sugar-function-name from ~S~%"

obj))

(t (string-upcase

(substitute #\-

#\Space

(remove-double-spaces obj)

:test #’char=)))))

August 23, 2006 sugar.nw 66

Now that we’ve seen how to find an existing sugar function, let’s look at
how to create a new one!

7.2.5 create-sugar-function (att-name db current-year)

Well the truth is that there isn’t much to it. The idea is that we first figure out
a symbolic name for the sugar function, then if the name is not already in use
by Common Lisp, we create a lambda expression, i.e. the function body, and
set the symbol’s function value to that lambda expression. That’s all there is
to it!

The lambda expression is a closure containing a function of unspecified argu-
ments which simply delegates the processing to exec-sugarwhile encapsulating
the values of the attribute name, a pointer to the internal database, and the
current year.

Once all the assignment is complete, the symbol is exported from the SUGAR
package and returned for good luck!

NOTE: In case of name collision between the symbol to which the sugar
function should be assigned and a symbol in the “Common-Lisp” package, then
an error is raised and processing is aborted.

Arguments:

1. a string from which the sugar function’s symbol name will be generated,

2. an internal database,

3. the current year.

Return:

• the symbol to which the sugar function has been assigned, exported from
the “SUGAR” package.

66 〈create-sugar-function 66〉≡ (98e)

(defun create-sugar-function (att-name db current-year)

(let ((sugar-func-name (sugar-function-name att-name))

(cur-yr (if current-year

current-year

(funcall (attribute-sugar-function "CURRENT YEAR")))))

(if (find-symbol sugar-func-name "COMMON-LISP")

(error "The sugar function name ~S is in use by COMMON-LISP."

sugar-func-name)

(let ((sym (intern sugar-func-name (find-package "SUGAR")))

(func #’(lambda(&rest args)

(exec-sugar att-name

args

db

cur-yr))))

(setf (symbol-function sym) func)

(export sym "SUGAR")

sym))))

August 23, 2006 sugar.nw 67

We’ve seen all the embedded calls in create-sugar-function except for the
most important exec-sugar. This one, and its friends will be explained now
(aren’t just sitting on the edge of your seat, holding your breath . . .)

7.3 How do Sugar Functions Work?

Well they say that expectation is the true pleasure in life. If that is the case
then the explanation of sugar functions should create immense pleasure for my
dear readers. It is long but not complex.

The idea is that sugar calls are parsed according to the length of the argu-
ment list which they receive. For each argument list length, specific conditions
apply and actions must be taken. These are performed by specific parsing func-
tions, conveniently named parse-0, parse-1, etc. where the number following
the hyphen indicates the length of the argument list that is parsed.

The first step in the parsing is the execution of the function exec-sugar.

7.3.1 exec-sugar (att-name args ht cur-yr &optional (f-lis
parse-funcs))

This is the first step in executing a sugar call. In fact, this is a dispatcher
function that takes the length of the sugar call’s argument list as an index to a
list of parsing functions and dispatches appropriately.

Error checking is performed on the length of the argument list, not on the
content. If there are too many arguments, then an error is raised and processing
is aborted.

The arguments to exec-sugar are all passed by encapsulation from create-sugar-function,
except the optional list of parsing functions for which the default value is always
used.

Arguments:

1. the attribute name from create-sugar-function,

2. the arguments passed to the sugar call from create-sugar-function,

3. the internal database, here called a hash-table since that is what it is in
this implementation, from create-sugar-function,

4. the current year, again from create-sugar-function,

5. the list of parsing functions indexed on the length of the argument list
that the function parses.

Return:

• The result of the sugar call is returned, whatever that may be.

August 23, 2006 sugar.nw 68

68a 〈exec-sugar 68a〉≡ (99c)

(defun exec-sugar (att-name args ht cur-yr &optional (f-lis *parse-funcs*))

"This is the dispatcher & work initiator for all sugar functions.

It dispatches according to the length of the argument list supplied to

the sugar function. Error checking is present.

"

(let ((ind (length args))

(err-msg

(concatenate

’string

"Too many arguments to ~S sugar function call!~%"

"Expected at most ~S, received ~S: args: ~S")))

(if (>= ind (length f-lis))

(error err-msg att-name (1- (length f-lis)) ind args)

(funcall (nth ind f-lis) att-name args ht cur-yr))))

The parsing functions are named parse-n where n indicates the length of the
argument list that the function will parse.

68b 〈parse-funcs 68b〉≡ (99c)

(defparameter *parse-funcs*

(list

#’parse-0

#’parse-1

#’parse-2

#’parse-3

#’parse-4))

August 23, 2006 sugar.nw 69

The sugar functions are the user API to the internal data structures. They
are created from attribute-names as returned from the utility function sugar-function-name.
There can be no name collisions since the SUGAR package detects and rejects
creation of sugar-functions that would collide with existing functions.

The sugar functions are specified as:

; (sugar (&rest args))

; returns 2 values depending on the arguments

; all sugar functions query unless one of the keywords

; :set

; :project

; :model

; :rule

; is present,

; in which case assignemnt is performed.

We will now describe the parsing functions one by one.

7.3.2 Arguments to the Parsing Functions

Since all the parsing functions are applied to the same argument list, they all
take the same arguments. The processing of each of these differs and is described
with the particular functions.

Parse Function Arguments:

1. att-name, the attribute name as a string in its original form and case
sensitive,

2. date value, t for a fact, absolute or relative year otherwise,

3. ht, the internal database,

4. cur-yr, the current year’s value,

5. optional accept-projected? default to t implying that projected values
will be accepted as valid for the return, if nil is used here then projected
values are filtered out and replaced by nil.

7.3.3 parse-0

This is the case of the arg list of length 1, e.g. (sugar).
This case is equivalent to:

(or (sugar t)

(sugar current-year))

The processing returns the result of the first successful execution of a rule or
nil ; nil if all fail. Rules may project into the db. In this case, we first attempt to
get the fact value, then the yearly value for current year. It is possible to filter

August 23, 2006 sugar.nw 70

on “accept-projected?”, as needed for potential internal calls to this function.
The actual execution of the query is delegated to parse-1.

Arguments as per all parsing functions.
Return:

1. the value of sugar’s factual value, or value for current year if not a known
fact; or nil if none found,

2. t if the value is the result of a projection, nil if not projected or if no value
was found,

70 〈parse-0 70〉≡ (99a)

(defun parse-0 (att-name unused ht cur-yr &optional (accept-projected? t))

(declare (ignore unused))

;;(when sgr-trace

;;(format t "Parse-0:~%att-name: ~S~%Current year: ~S~%"

;; att-name cur-yr)

;;(break))

(parse-1 att-name (list cur-yr) ht cur-yr accept-projected?))

August 23, 2006 sugar.nw 71

7.3.4 parse-1

This is the case of the arg list of length 0, e.g. (sugar t) (sugar -2) (sugar 1998)
(sugar ()).

The single argument may be any of:

• t implying we are seeking a fact value,

• a relative or absolute year,

• nil implying that we are looking for rules.

The processing returns the result of the first successful execution of a rule or
nil ; nil if all fail. Rules may project into the db. In this case, we first attempt to
get the fact value, then the yearly value for current year. It is possible to filter
on “accept-projected?”, as needed for potential internal calls to this function.

Arguments as per all parsing functions.
Return:

• if the argument is t :

1. sugar’s fact value, or nil if not known and not projectable,

2. t if the value is the result of a projection, nil otherwise.

• if the argument is an absolute or relative year value:

1. sugar’s fact value if known or projectable; or sugar’s value for the
year if known or projectable; nil if neither are known or projectable.

2. t if the value is the result of a projection, nil otherwise.

• if the argument is nil or if the att-name is nil :

1. all rules that are associated with sugar, inclusive of general rules, in
the order of increasing precedence,

2. only specific rules that are associated with sugar, in the order of
increasing precedence.

One subtlety of this and of many of the parsing functions the use of the lisp
function destructuring-bind. This function uses the Common-Lisp parser to
match key-words from an argument list, to local variables in the code. It is very
useful indeed.

The function parse-1 proceeds as follows:

1. First, bind the single argument to the local variable date,

2. if date is null, then delegate to the database function get-rules to get
the rules.

August 23, 2006 sugar.nw 72

3. otherwise, bind the values obtained by a delegated call to find-or-project
for the fact value,

4. if this returns a non null value, then it is returned,

5. if not, and if date is a year, then again delegate to get the timely value,

6. otherwise, give up and return the failure values.

72 〈parse-1 72〉≡ (99a)

(defun parse-1 (att-name arg-lis ht cur-yr &optional (accept-projected? t))

(destructuring-bind

(date) arg-lis

;;(when sgr-trace

;;(format t "Parse-1:~%att-name: ~S~%Current year: ~S~%Date: ~S~%"

;; att-name cur-yr date)

;;(break))

(if (null date) ; return the rules

(ids:get-rules att-name :ht ht)

(multiple-value-bind

(val projected?)

(find-or-project att-name

t

ht

:accept-projected? accept-projected?)

;; CORRECTION 2006 04 30 nil)

(cond

(val (values val projected?))

((not (eq date t))

(find-or-project att-name

(wut:abs-year date cur-yr)

ht

:accept-projected? accept-projected?))

(t (values ()())))))))

August 23, 2006 sugar.nw 73

7.3.5 parse-2

If argument list is of length 2, there are three cases: two queries, one assignment.
Case-1: Query for a period, e.g. (sugar -2 2010).
In this case the arguments are start-year, stop-year and these may be abso-

lute or relative.
The return values are:

1. a list of sugar’s values for each year on [start-year, stop-year], or nil if not
known and not projectable,

2. a list with a value for each year that is t if the value is the result of a
projection, nil otherwise.

Case-2: Query for t or current-year while filtering projected values, e.g.
(sugar :projected? nil) In this case the arguments are the keyword “:pro-
jected?” and a boolean which may be any object but will be evaluated as true
or false.

This is equivalent to call with arg list of length 3:

(or (sugar t :projected? bool)

(sugar current-year :projected? bool))

The return values are:

1. sugar’s fact or yearly value, or nil if not known or not obtainable in ac-
cordance with the value of “:projected?”,

2. t if the value is the result of a projection, nil otherwise.

Case-3: Assignment of sugar as model-attribute e.g: (sugar :model t)
(sugar :model 1).

In this case the arguments are the keyword “:model” and an indicator which
may be any object but will be evaluated as either t or as something else that is
either TRUE or FALSE.

The result of this kind of call makes the attribute a model attribute with the
indicator acting as follows:

• a t indicates that the attribute will be reported

• another TRUE value indicates that it will be a model attribute, but not
reported,

• a FALSE value means that it is neither of the previous.

The return values are:

1. sugar’s attribute name

2. if inserted as model t, otherwise nil.

August 23, 2006 sugar.nw 74

As can be seen, parse-2 operates by delegation and as such is merely a
dispatcher.

74a 〈parse-2 74a〉≡ (99a)

(defun parse-2 (att-name arg-lis ht cur-yr &optional (accept-projected? t))

(let ((first (car arg-lis)))

(cond

((numberp first)

(parse-2-2-numbers att-name arg-lis ht cur-yr accept-projected?))

((eq :model first)

(parse-2-model-att att-name arg-lis ht cur-yr accept-projected?))

((eq :projected? first)

(parse-2-projected? att-name arg-lis ht cur-yr accept-projected?))

(t (error "parse-2: Arguments incorrect: ~S~%" arg-lis)))))

parse-2-2-numbers

This is the helper function for parse-2 which handles the case of a query for
a period of years, i.e. the argument list contains “2 numbers”. The function
processes by mapping calls to parse-1 over the number list obtained for [start-
date, stop-date]. The resulting values are assembled into two lists, the first
containing the values returned by the query, the second containing the booleans
indicating if the value is projected or not.

Arguments and return values are specified in parse-2.

74b 〈parse-2-2-numbers 74b〉≡ (99a)

(defun parse-2-2-numbers (att-name arg-lis ht cur-yr accept-projected?)

(destructuring-bind

(start-date stop-date) arg-lis

;;(when sgr-trace

;;(format t "Parse-2-2-numbers:~%att-name: ~S~%Current year: ~S~%"

;; att-name cur-yr)

;;(format t "Start-Date: ~S~%Stop-Date: ~S~%Accept-Projected?: ~S~%"

;; start-date stop-date accept-projected?)

;;(break))

(let ((pair-lis (mapcar #’(lambda (date)

(multiple-value-list

(parse-1

att-name

(list date)

ht

cur-yr

accept-projected?)))

(wut:numlist (wut:abs-year start-date cur-yr)

(wut:abs-year stop-date cur-yr)))))

(values (mapcar #’car pair-lis)

(mapcar #’cadr pair-lis)))))

August 23, 2006 sugar.nw 75

parse-2-model-att

This is the helper function for parse-2 which handles the case of assignment of
“model attribute” for reporting or not, i.e. the argument list contains “:model
bool”. The function processes by first destructuring the argument list, then
validating that the ”:model” keyword was indeed bound, and if so makes an
internal database call to lookup to delegate the work.

Arguments and return values are specified in parse-2.

75 〈parse-2-model-att 75〉≡ (99a)

(defun parse-2-model-att (att-name arg-lis ht cur-yr accept-projected?)

(declare (ignore cur-yr accept-projected?))

(destructuring-bind

(&key model) arg-lis

;;(when sgr-trace

;;(format t "Parse-2-model-att:~%att-name: ~S~%Current year: ~S~%"

;; att-name cur-yr)

;;(format t "model: ~S~%Accept-Projected?: ~S~%"

;; model accept-projected?)

;;(break))

(if (not model) (values att-name nil)

;; next line was modified 2006 01 18 to support defreport

;; indeed, a TRUE value that is NOT T, means that the attribute

;; should be reported!

(progn (ids:lookup t t ht :val att-name :p? (eq model t))

(values att-name t)))))

August 23, 2006 sugar.nw 76

parse-2-projected?

This is the helper function for parse-2 which handles the case of assignment of a
query filtering on projected values, i.e. the argument list contains “:projected?
bool”. The function processes by first destructuring the argument list, then
delegating the work to parse-0.

Arguments and return values are specified in parse-2.

76 〈parse-2-projected? 76〉≡ (99a)

(defun parse-2-projected? (att-name arg-lis ht cur-yr accept-projected?)

"handles the case of :projected? by delegating to parse-0

"

(destructuring-bind

(&key projected?) arg-lis

;;(when sgr-trace

;;(format t "Parse-2-aux:~%att-name: ~S~%Current year: ~S~%"

;; att-name cur-yr)

;;(format t "projected?: ~S~%Accept-Projected?: ~S~%"

;; projected? accept-projected?)

;;(break))

(parse-0 att-name arg-lis ht cur-yr (and projected? accept-projected?))))

August 23, 2006 sugar.nw 77

7.3.6 parse-3

If argument list is of length 3, there are three cases: one query, and two assign-
ments.

Case-1: Query for a fact or a single year, filtering for “projected?” e.g,
(sugar t :projected? nil) (sugar -1 :projected? t) In this case the argu-
ments are a date, the keyword “:projected?” and a boolean such that:

date: may be t, an absolute year or relative year,

keyword: must be “:projected?” since all other keywords would entail assign-
ment,

boolean: may be any object but will be evaluated as TRUE or FALSE.

The return values are:

1. the value of sugar for date, accepting projected values if bool is TRUE,
and not accepting projections otherwise,

2. t if the value is the result of a projection, nil otherwise.

Cases-2 and 3: Assignment for a fact or timely value, as projected or not, e.g.
(sugar t :set “john”) (sugar 2005 :project 104.5) (sugar 2000 :set 100)
In this case the arguments are a date, either of the keywords “:project” or “:set”
and a value to be assigned such that:

date: may be t, an absolute year or relative year,

keyword: If keyword is “:project” then the value is assigned and the “pro-
jected?” flag is set to TRUE. If keyword is “:set” then the value is assigned
and the “projected?” flag is un-set.

value: may be any object.

The return values are:

1. the value that has been projected or set,

2. t if the value is projected, nil otherwise.

The processing follows the same path as the other parsing functions:

1. After destructuring, selection of the case is determined by the presence or
absence of values for the keywords.

2. First, we check on “:set”. If this is present then we delegate to the database
call with a lookup and return the appropriate 2 values,

3. if not, we then check on “:project” and perform the appropriate action
similar to the previous case,

August 23, 2006 sugar.nw 78

4. otherwise, it must be a query on with the “projected?” filter. This is
delegated to parse-1.

78 〈parse-3 78〉≡ (99a)

(defun parse-3 (att-name arg-lis ht cur-yr)

(destructuring-bind

(date &key set project projected?) arg-lis

;;(when sgr-trace

;;(format t "Parse-3:~%att-name: ~S~%Current year: ~S~%" att-name cur-yr)

;;(format t "set:: ~S~%project: ~S~%projected?: ~S~%"

;; set project projected?)

;;(break))

(let ((abs-yr (wut:abs-year date cur-yr)))

(cond

(set (progn (ids:lookup att-name abs-yr ht :val set :p? nil)

(values set nil)))

(project (progn (ids:lookup att-name abs-yr ht :val project :p? t)

(values project t)))

(t ; then its a query filtering on projected?

(parse-1 att-name (list abs-yr) ht cur-yr projected?))))))

August 23, 2006 sugar.nw 79

7.3.7 parse-4

If argument list is of length 4, there are two cases: one query, and one assign-
ment.

Case-1: Query on a period while filtering for “projected?” e.g. (sugar -
2 +5 :projected? nil) In this case the arguments are start-year, stop-year,
the keyword “:projected?” and a boolean such that:

start-year, stop-year: absolute or relative years,

keyword: must be “:projected?” since all other keywords would entail assign-
ment,

boolean: it may be any object but will be evaluated as TRUE or FALSE.

1. a list of sugar’s values for each year on [start-year, stop-year], or nil if not
known and not projectable,

2. a list with a value for each year that is t if the value is the result of a
projection, nil otherwise.

Case-2: rule assignment, e.g. (sugar :rule cap-x :prec 20). In this case
the arguments are keyword-1, value, keyword-2, and a number such that:

keyword-1: is “:rule”,

value: may be a function or symbol that evaluates to a function,

keyword-2: is “:prec”,

number: is the numerical value of the rule’s precedence. This value must
be > 0.

1. the function that was assigned as a rule for the attribute,

2. t if success, nil if not.

This function’s processing is delegated to parse-2-2-numbers in “case 1”
and to parse-4-rule in the “case 2”.

79 〈parse-4 79〉≡ (99a)

(defun parse-4 (att-name arg-lis ht cur-yr)

(if (numberp (car arg-lis))

(destructuring-bind

(start-date stop-date &key projected?) arg-lis

;;(when sgr-trace

;;(format t "Parse-4~%att-name: ~S~%Current year: ~S~%" att-name cur-yr)

;;(format t "Start-Date: ~S~%Stop-Date: ~S~%Projected: ~S~%"

;; start-date stop-date projected?)

;;(break))

(parse-2-2-numbers att-name (list start-date stop-date) ht

cur-yr projected?))

(parse-4-rule att-name arg-lis ht cur-yr)))

August 23, 2006 sugar.nw 80

parse-4-rule

This helper function does the rule assignment work for parse-4. It does the
same destructuring as previously, but with the assurance that both keys will be
bound. It delegates the assignment to the database function lookup.

80 〈parse-4-rule 80〉≡ (99a)

(defun parse-4-rule (att-name arg-lis ht unused)

(declare (ignore unused))

(destructuring-bind

(&key rule prec) arg-lis

;;(when sgr-trace

;;(format t "Parse-4-rule~%att-name: ~S~%" att-name)

;;(format t "Rule: ~S~%Precedence: ~S~%"

;; rule prec)

;;(break))

(ids:lookup att-name () ht :val rule :p? prec)))

August 23, 2006 sugar.nw 81

7.3.8 find-or-project (att-name abs-y ht &key (accept-
projected? t) (project? t))

This is the main work-horse function which supports the parsing functions. Its
job is to first look for data, and then if there is none available, to fire rules until
the data is created, or until all available rules have failed.

Arguments:

1. string name of the attribute, or t if we are looking for “MODEL-ATTRIBUTES”,

2. absolute year value or t,

3. the main hash-table,

4. a boolean indicating that projected values are or are not acceptable,

5. a boolean indicating that it is ok to project or not.

Return: In the case of an attribute of type string:

1. the value of the attribute for the abs-year or nil if not found, and not
projectable depending on the booleans and the result of rule firings,

2. t if the value is the result of a projection, nil if not projected or if no value
was found,

In the case of the att-name t :

1. list of model-attribute names,

2. t.

This function processes as follows:

1. First, a lookup finds the value, if present in the database,

2. then, if the attribute was t, and results were found, then the results are
formatted with a mapcar, and returned,

3. if the attribute is not t, but data was found, we filter the return for “pro-
jected” values as needed with a call to return-val-projected?,

4. if no value is found, and we are allowed to project, then we delegate the
return to project,

5. finally, there’s nothing left but to give up and return the failure response
nil; nil.

August 23, 2006 sugar.nw 82

82 〈find-or-project 82〉≡ (99b)

(defun find-or-project (att-name abs-y ht

&key (accept-projected? t) (project? t))

(multiple-value-bind

(val found?) (ids:lookup att-name abs-y ht)

;;(when sgr-trace

;;(format t "Find-or-Project:~%att-name: ~S~%abs-y: ~S~%" att-name abs-y)

;;(format t "Accept-projected: ~S~%project?: ~S~%"

;; accept-projected? project?)

;;(format t "Val: ~S~%Found: ~S~%"

;; val found?)

;;(break))

(cond

((and (eq t att-name) found?) (values (mapcar #’car val) t))

(found? (return-val-projected? val accept-projected?))

((and accept-projected?

project?) (project att-name abs-y ht))

(t (values ()())))))

August 23, 2006 sugar.nw 83

7.3.9 project (att-name abs-date ht)

This function is called when it is necessary to project data in order to reply to
a query. It works by finding the applicable rules for the attribute in question,
firing them in the correct order, and returning the result of the first successful
firing, or signalling a failure if none succeeded.

Arguments:

1. an attribute name,

2. an absolute date,

3. the main hash-table.

Return:

1. the projected value, or nil if projection fails,

2. t if projected with success, nil in all other cases.

Using some-rule, we map over all the applicable rules. If a value is produced,
then it is assigned in a call to lookup and returned with the projected indicator
t. Otherwise, the failure response, nil; nil, is returned.

83 〈project 83〉≡ (99b)

(defun project (att-name abs-date ht)

(let ((value (some-rule (ids:get-rules att-name :ht ht) att-name abs-date)))

;;(when sgr-trace

;;(format t "Project:~%att-name: ~S~%abs-yr: ~S~%" att-name abs-date)

;;(format t "Value: ~S~%"

;; value)

;;(break))

(if value

(progn (ids:lookup att-name abs-date ht :val value :p? t)

(values value t))

(values ()()))))

August 23, 2006 sugar.nw 84

7.3.10 some-rule (rule-func-lis att-name abs-date)

This is a mapping function, similar to the Common Lisp function some. It
applies all the rules in its first argument to the arguments (att-name abs-date)
and returns the first non nil result, or nil if none return a TRUE value.

Arguments:

1. a list of rule-functions in a form callable by “apply” or “funcall”,

2. a string attribute name,

3. an absolute date.

Return:

1. The value that was produced by the 1st successful rule execution or nil if
all failed,

2. The second value of the rule function application, or nil if no functions
return a value.

The processing is recursive and proceeds as per:

1. First, if there are no more rules in the rule-func-lis, then we return the
failure values,

2. if there are elements in the rule-func-lis, then first send the rule-func to
loop-detect,

3. then use a funcall to execute the selected rule-func,

4. then when the rule-func returns, remove it from the loop detector,

5. and, if there was a valid value returned, this is the return,

6. otherwise recurse on the remaining elements in rule-func-lis.

84 〈some-rule 84〉≡ (99b)

(defun some-rule (rule-func-lis att-name abs-date)

(if(null rule-func-lis) (values () ())

(let ((rule-func (car rule-func-lis)))

(loop-detect +1 rule-func att-name abs-date)

(multiple-value-bind

(val-1 val-2)

(funcall rule-func att-name abs-date)

(loop-detect -1)

(if val-1 (values val-1 val-2)

(some-rule (cdr rule-func-lis) att-name abs-date))))))

August 23, 2006 sugar.nw 85

7.3.11 return-val-projected? (val-pair accept-projected?)

This is a conversion helper function used to filter a pair of the form (val . bool)

for projected? or not.
Arguments:

1. a pair (value . t) or (value . nil) where the cdr indicates projected
or not,

2. a boolean indicating if projected values are acceptable or not.

Return:

1. value, or nil if projected conflicts with “accept-projected?”,

2. the value of “projected?”.

85 〈return-val-projected? 85〉≡ (99b)

(defun return-val-projected? (val-pair accept-projected?)

(let ((v (car val-pair))

(p (cdr val-pair)))

;;(when sgr-trace

;;(format t "Return-val-Projected?:~%val-pair: ~S~%" val-pair)

;;(format t "Accept-projected?: ~S~%"

;; accept-projected?)

;;(break))

(if (or (not p)

accept-projected?)

(values v p)

(values () ()))))

August 23, 2006 sugar.nw 86

7.4 How are Sugar Functions Stored?

We must now look at the operation of the SUGAR package itself. There are
quite a few things to look at here. The SUGAR package must be cleared out
at each load of a new data set, since if not, the sugar functions would point to
the wrong data. Similarly, the special sugar functions must be regenerated for
each new data set. Finally, the reset and loop detection mechanisms must also
be reset.

All of these operations are performed by the following function.

7.4.1 init-sugar (ticker current-year &key loop-detect)

This is the start of any data set load.
Arguments:

1. string name for the ticker naming the data set,

2. the current year as number

3. a boolean which if TRUE activates loop detection, otherwise loop detec-
tion is disabled (the default).

Return:

• the internal database.

Processing proceeds as per:

1. First, create the internal database,

2. then, nullify any existing sugar functions,

3. then create sugar functions for t and for nil, called “MODEL-ATTRIBUTES”
and “GENERAL-RULES”.

4. then, create a sugar function for “CURRENT-YEAR” and set it’s fact
value.

5. create a sugar function for “TICKER” and set it’s fact value.

6. create the special rule function “simple-get-data,”

7. create the “sugar-nullifier” and the “loop-detector”,

8. finally, return the internal database.

August 23, 2006 sugar.nw 87

86 〈init-sugar 86〉≡ (98e)

(defun init-sugar (ticker current-year &key loop-detect)

(let* ((db (ids:make-db 0)))

(nullify-sugar)

(create-simple-get-data db)

(create-sugar-function t db current-year)

(create-sugar-function () db current-year)

(funcall

(att-name-2-sugar-func "CURRENT YEAR" db current-year)

t :set current-year)

(funcall

(att-name-2-sugar-func "TICKER" db current-year)

t :set ticker)

(create-sugar-function-nullifier db)

(create-loop-detector loop-detect)

db))

August 23, 2006 sugar.nw 88

7.5 Where do Sugar Functions Go when No Longer
Needed?

Are you wondering what this section could possibly be about? If you are, then
you’re in the right place. If not, well, just fake it and read on.

Sugar functions are closures and as such contain pointers to data. This data
is enclosed at the time when the sugar function is created. Amongst this data
is a pointer to the internal database containing all the data for the current data
load. When a new set of data is loaded, a new internal database is created and
any sugar functions must be set to point to it. The easiest way to do this is
to simply “un-defun” the old sugar functions and create fresh ones. This is the
strategy which has been implemented and is called “nullification”.

Nullification is done in two phases, first the the function which will do the
nullification is created. It is called, nullify-sugar, and is created by a call to
create-sugar-function-nullifier. Later on, when nullify-sugar is called,
the actual work of nullifying is delegated to nullify-sugar-functions.

7.5.1 create-sugar-function-nullifier (db)

This tiny function is used to “create a function” that when called will nullify
all the sugar functions that are known. This is done by creating a closure
object encapsulating the db argument and setting function value of the symbol
“nullify-sugar” to that closure.

Argument:

1. an internal database.

Return:

• the #’lambda closure encapsulating the call to nullify-sugar-functions.

88a 〈create-sugar-function-nullifier 88a〉≡ (98e)

(defun create-sugar-function-nullifier (db)

(setf (symbol-function ’nullify-sugar)

#’(lambda()

(nullify-sugar-functions db))))

nullify-sugar ()

This is just a placeholder definition needed by the Common Lisp reader for the
definition of create-sugar-function-nullifier during the initial loading of
the SUGAR package.

88b 〈nullify-sugar 88b〉≡ (98e)

(defun nullify-sugar ()

"just a placeholder for the function which is really

defined in create-sugar-function-nullifier")

August 23, 2006 sugar.nw 89

7.5.2 nullify-sugar-functions (db)

This is the function that is called by nullify-sugar when it is time to nullify
all the known sugar functions.

It proceeds by setting all the known sugar functions to the null-sugar-
function. It works by mapping, over all the attributes in the system, a lambda
that sets the attribute’s symbol-function to the null sugar function returned by
the call to make-null-sugar-func

Arguments:

1. an internal database.

Return:

• list of attributes whose sugar functions have been nullified.

89 〈nullify-sugar-functions 89〉≡ (98e)

(defun nullify-sugar-functions (db)

(mapc #’(lambda(att-name)

(let ((sugar-func-symbol (sugar-function-symbol att-name)))

(setf (symbol-function sugar-func-symbol)

(make-null-sugar-func sugar-func-symbol))))

(union (ids:get-keys db)

(ids:get-model-attributes :ht db)

:test #’string=)))

August 23, 2006 sugar.nw 90

7.5.3 make-null-sugar-func (name)

This is the final step in the nullification process. This function returns a “null”
sugar function which if ever called would mean that somehow a deprecated sugar
function has been called, i.e. something would be very wrong. Needless to say,
the function simply raises an error and aborts processing. It sends a message
to std-err that explicitly indicates which sugar function was improperly called.

Argument:

1. a sugar function name as a symbol.

Return:

• the null sugar function as a lambda expression.

90 〈make-null-sugar-func 90〉≡ (98e)

(defun make-null-sugar-func (name)

(let ((message-string

(concatenate ’string

"Call to inexistent sugar-function!!~%"

"The function was called as: ~A")))

#’(lambda(&rest r)

(error message-string

(append

(list

(concatenate

’string

"SGR:"

(symbol-name name))) r)))))

August 23, 2006 sugar.nw 91

7.6 Attribute Name “Apply” function and Helpers

7.6.1 apply-attribute-sugar (att &rest args)

This function is similar to the Common Lisp function “funcall”. It takes an
attribute name as a string and applies that attribute’s sugar function to the
rest of the arguments. Oops, we probably should have called it “func-attribute-
sugar” but then what would people think? In the end, no one’s perfect. We’ll
just have to continue to live with this slight misnomer

Arguments:

1. a string name of an attribute,

2. all possible valid arguments to a sugar function.

Return:

• The result of the application of the sugar function corresponding to the
first argument, to the rest of the arguments. An error is raised if there is
no corresponding sugar function.

The processing is straightforward:

1. first, get the symbol corresponding to the attribute string,

2. then, find the symbol’s function value,

3. if there’s no function value, signal the error,

4. finally, return the value of the application of the symbol-function to the
arguments.

There is no creation of sugar function; if none exists an error will be raised.

91 〈apply-attribute-sugar 91〉≡ (98c)

(defun apply-attribute-sugar (att &rest args)

(let* ((sym (sugar-function-symbol att))

(att-sugar-func

(symbol-function

(if sym sym

(error

"apply-attribute-sugar: Attribute has no sugar function: ~S~%"

att)))))

;;(when sgr-trace

;; (format t "apply-attribute-sugar: ~S~%" att)

;;(break))

(apply att-sugar-func args)))

August 23, 2006 sugar.nw 92

7.6.2 remove-double-spaces (string)

This helper function cleans up attribute string names so that they can be used
for the generation of the corresponding symbol name. It removes multiple spaces
as well as leading and trailing space. It can handle empty strings.

Argument:

1. A string, can be empty.

Return:

• The string with no leading or trailing spaces, and with all multiple spaces
replaced by a single space.

92 〈remove-double-spaces 92〉≡ (98c)

(defun remove-double-spaces (string)

(string-trim

" "

(reduce #’(lambda(l r)

(let ((last-char (char l (1- (length l))))

(next-char (char r (1- (length r)))))

(if (char= #\Space last-char next-char)

l

(concatenate ’string

l

r))))

(map ’list #’(lambda(char)

(format nil "~A" char))

string)

:initial-value " ")))

August 23, 2006 sugar.nw 93

7.7 Loop detection

What is this? More stuff? Shouldn’t this file be broken up into smaller ones?
Who wrote this anyway?

Well, we’re sorry to admit that all those remarks are perfectly justified and
someone should do something about it . . .

SAL provides a Loop Detection mechanism to help the end user to debug
rule functions. When could a rule loop occur? Well suppose there is a query for
data “A” and a rule is fired launching a query for data “B”. This in turn may
fire a rule which launches a query for data “A” again, and we have a loop. SAL
can detect this and inform the user as to what went wrong.

7.7.1 create-loop-detector (activate)

The first part of loop detection is the creation of the loop detector function. The
loop detector function, called loop-detect is called at every rule firing and at
every return from a rule firing. At the rule firing a counter is incremented,
and at the return the counter is decremented. Also, at each firing the rule’s
arguments are recorded and compared with all those previously recorded. In
this manner, if a rule is called twice with the same set of arguments, it will be
detected and the user can be informed.

Arguments:

1. boolean, if TRUE activate, otherwise deactivate loop detection.

Return:

• The #’lambda closure encapsulating the rule-firings list.

loop detector: lambda (inc &rest args)

This is the function that is actually called before and after each rule firing (if
loop detection is enabled).

Arguments:

1. a number: if positive then the firing is pushed onto the internal list of
firings; if negative, we are returning from a firing so the last firing is
popped from the internal list,

2. rest of args, i.e. a tuple: (#’rule-func attribute yr).

Return:

• if a loop is detected, exit by error with display of the loop delegated to
show-loop, otherwise the updated list of firings tuples is returned.

The lambda takes an argument +1 if adding a firing, −1 if returning from a
firing and checks the args for having already been seen in a previous call. If so,

August 23, 2006 sugar.nw 94

error, if not the args are pushed/popped form the list of firings and execution
continues.

94a 〈create-loop-detector 94a〉≡ (98d)

(defun create-loop-detector (activate)

(if activate

(let ((firings-lis ()))

(setf (symbol-function ’loop-detect)

#’(lambda (inc &rest args)

(if (minusp inc) (pop firings-lis)

(if (member args firings-lis :test #’equal)

(error "Loop-Detector: rule loop detected:~%~:@W"

(show-loop args firings-lis))

(push args firings-lis))))))

(setf (symbol-function ’loop-detect)

#’(lambda (inc &rest args)

(declare (ignore inc args))))))

loop-detect (inc &rest args)

This is just a placeholder definition needed by the Common Lisp reader for the
definition of create-loop-detector during the initial loading of the SUGAR
package.

94b 〈loop-detect 94b〉≡ (98d)

(defun loop-detect (inc &rest args)

(declare (ignore inc args)))

August 23, 2006 sugar.nw 95

7.7.2 show-loop (tuple tuple-lis)

This function is used to display the detected loop to the user via the call to
“error”. It returns a string which contains the rule firings, with their arguments,
in the sequence which has looped.

Arguments:

1. the tuple that caused the loop,

2. the firing tuples in the order of last-in, first-out.

Return:

• a string showing the sequence of firings.

95a 〈show-loop 95a〉≡ (98d)

(defun show-loop (tuple tuple-lis)

(let* ((full-lis (append (reverse tuple-lis) (list tuple)))

(first (car full-lis)))

(reduce #’(lambda(l-tuple r-tuple)

(format nil "~A~%~S" l-tuple r-tuple))

(cdr full-lis) :initial-value (format nil "~S" first))))

7.8 SAL’s private Sugar Functions

7.8.1 create-simple-get-data (ht)

This function will create and assign a special rule function for the internal
database key-pair (nil, nil), which will call find-or-project on the pair (at-
tribute, date) with “:project?” set to FALSE. In other words, executing this
function creates a rule function of precedence zero, i.e. the first rule function to
be called in all cases, which is general for all attributes, and which will simply
look up its value in the internal database. It will never project.

Argument:

• an internal database hash-table.

Return:

1. the value found, or nil if unknown,

2. a boolean TRUE indicating that the value is projected, or FALSE if not
projected or if absent.

NOTE: The rule function created by this call will NOT project data.

95b 〈create-simple-get-data 95b〉≡ (98e)

(defun create-simple-get-data (ht)

(ids:lookup () () ht

:val #’(lambda(at yr)

(find-or-project at yr ht :project? nil))

:p? 0))

August 23, 2006 sugar.nw 96

7.8.2 industry (&rest r)

This is a dummy function definition, used as a placeholder until the true “in-
dustry” sugar function becomes available. It is needed prior to package initial-
ization, just so that the symbol “industry” is defined.

96 〈industry 96〉≡ (98e)

(defun industry (&rest r)

(declare (ignore r))

(values ()()))

August 23, 2006 sugar.nw 97

7.9 Test Harness and Debugging Helpers

97 〈sugar-test-harness 97〉≡ (98b)

(defparameter *c-c-alis* ())

(setf *c-c-alis*

’(("Init Sugar and create a Stock-db called ’d’:"

.

"(format t \"~S~%\" (setf d (sgr:init-sugar \"ibm\" 2005)))")

("Create a sugar func for \"toto\":"

.

"(format t \"~S~%\" (sgr:att-name-2-sugar-func \"toto\" d))")

("Insert the 4-tuple: \"toto\" 1995 5 NOT-projected!"

.

"(format t \"~S~%\" (multiple-value-list (sgr:toto 1995 :set 5)))")

("Insert the 4-tuple: \"toto\" 1996 6 PROJECTED!"

.

"(format t \"~S~%\" (multiple-value-list (sgr:toto 1996 :project 6)))")

("Get the value of \"toto\" in 1997"

.

"(format t \"~S~%\" (multiple-value-list (sgr:toto 1997)))")

("Get the values of \"toto\" on [1994 2000]"

.

"(format t \"~S~%\" (multiple-value-list (sgr:toto 1994 2000)))")

("Get only the database values of \"toto\" on [1994 1998]"

.

"(format t \"~S~%\" (multiple-value-list (sgr:toto 1994 1998 :projected? nil)))")

("Examine the Stock-db called ’d’:"

.

"(format t \"~S~%\" d)")

("Create a sugar func for \"ceo\":"

.

"(format t \"~S~%\" (sgr:att-name-2-sugar-func \"ceo\" d))")

("Insert the tuple: \"ceo\" t \"John\""

.

"(format t \"~S~%\" (multiple-value-list (sgr:ceo t :set \"John\")))")

("Who is the ceo?"

.

"(format t \"~S~%\" (multiple-value-list (sgr:ceo)))")

("Who is the ceo stupidly asked for 2010?"

.

"(format t \"~S~%\" (multiple-value-list (sgr:ceo 2010)))")

("Who is the ceo stupidly asked for [2000 2005]?"

.

"(format t \"~S~%\" (multiple-value-list (sgr:ceo 2000 2005)))")

))

August 23, 2006 sugar.nw 98

98a 〈sugar-debugging-helpers 98a〉≡ (98b)

;;(defparameter sgr-trace ())

7.10 Physical Layout of the File

The package is ordered as per the following:

98b 〈sugar.lisp 98b〉≡
;;; sugar.lisp

〈lisp-header 143b〉
〈sugar-package-def 61〉
〈sugar-debugging-helpers 98a〉
〈attribute-sugar-function-manipulators 98c〉
〈loop-detection 98d〉
〈sugar-package-init 98e〉
〈parsing-functions 99a〉
〈parsing-helpers 99b〉
〈sugar-execution 99c〉
〈eoc 143c〉
〈sugar-test-harness 97〉
〈eof 144〉

Each of the subsections of the file is defined by the following sets of functions:

98c 〈attribute-sugar-function-manipulators 98c〉≡ (98b)

〈remove-double-spaces 92〉
〈sugar-function-name 65〉
〈sugar-function-symbol 64b〉
〈attribute-sugar-function 64a〉
〈apply-attribute-sugar 91〉
〈att-name-2-sugar-func 63〉

98d 〈loop-detection 98d〉≡ (98b)

〈show-loop 95a〉
〈loop-detect 94b〉
〈create-loop-detector 94a〉

98e 〈sugar-package-init 98e〉≡ (98b)

〈create-simple-get-data 95b〉
〈create-sugar-function 66〉
〈make-null-sugar-func 90〉
〈nullify-sugar-functions 89〉
〈nullify-sugar 88b〉
〈create-sugar-function-nullifier 88a〉
〈industry 96〉
〈init-sugar 86〉

August 23, 2006 sugar.nw 99

99a 〈parsing-functions 99a〉≡ (98b)

〈parse-0 70〉
〈parse-1 72〉
〈parse-2 74a〉
〈parse-2-2-numbers 74b〉
〈parse-2-model-att 75〉
〈parse-2-projected? 76〉
〈parse-3 78〉
〈parse-4 79〉
〈parse-4-rule 80〉

99b 〈parsing-helpers 99b〉≡ (98b)

〈find-or-project 82〉
〈project 83〉
〈some-rule 84〉
〈return-val-projected? 85〉

99c 〈sugar-execution 99c〉≡ (98b)

〈parse-funcs 68b〉
〈exec-sugar 68a〉

August 23, 2006 sugar.nw 100

7.11 SUGAR Package History

2005 12 17: GF creation of the file.

2005 12 19: GF created some new functions and adapted so as to be able to
generate sugar for “MODEL-ATTRIBUTES” and “GENERAL-RULES”.

2005 12 28: GF update to handle package-defs.lisp and correct name-space
problems.

2006 01 11: GF update to move sugar-function-symbol from rule-funcs.lisp,
create new function: apply-attribute-sugar

2006 01 18: GF modify parse-2-model to handle use of model list as report
spec. this means using a significant value instead of simply t and nil as
value of keyword :model in sugar call (toto :model 1).

2006 01 29: GF update to create sugar-func-lis and associated mgt.

2006 02 01: GF made the test harness *C-C-ALIS* private to the SGR pack-
age.

2006 02 03: GF cleaned up the exported symbol list, created the function:
attribute-sugar-function, repaired defect in att-name-2-sugar-func!!!
Tested OK!

2006 02 05: GF update and repair error in att-name-2-sugar-func to test also
model attributes before sugar-function creation. Remove *sugar-function-
lis* and use a closure on nullify-sugar to hand clean-up of sugar-functions
on init. Update as per code-review, too! Fully tested, all is 100% +
performance improvement of 5%!!!

2006 02 06: GF update to implement loop detection in rule-firings!

2006 02 07: GF update to complete loop detection in rule-firings! comment
out all tracing

2006 02 09: GF update init-sugar to uppercase “CURRENT YEAR” and “TICKER”
remove all reference to stock-data-structure which has become obsolete.
This wide-ranging change has been tested and seems ok, although there
seems to be a slight increase in db loading time.

2006 02 10: GF create placeholder industry function. Fixed defect in create
sugar function! Optimization in show-loop, following Blake’s remark!

2006 02 19: GF moved sugar-function-name and remove-double-spaces

to this file from utilities.lisp.

2006 04 30: GF corrected bug in parse-1 which prevented projection with
date = T .

August 23, 2006 sugar.nw 101

2006 05 17: GF improved ordering of functions during conversion to Literate
style.

2006 05 22: GF simplified the logic of parse-3 to better reflect the 3 cases
described.

Chapter 8

Rule Support Functions

The application of rules to compute missing data and to project it into the
database is also at the heart of SAL. Indeed, SAL is a backward chaining rule-
based deduction engine and as such support for the manipulation of rules is the
fundamental element of SAL seen by the user.

The RULE-FUNCS package provides that support.

8.1 The RULE-FUNCS Package

The package definition shows the five exported symbols. These will be detailed
in the order of importance and in a depth first exploration.

102 〈rule-funcs-pkg-def 102〉≡ (110a)

(defpackage "RULE-FUNCS"

(:use "COMMON-LISP" "SUGAR")

(:nicknames "RF")

(:export "INIT"

"DEFRULE"

"DEFREPORT"

"DEFMODEL"

"DEFDATA"

))

(in-package "RULE-FUNCS")

102

August 23, 2006 rule-funcs.nw 103

8.1.1 init (db)

Package initialization is performed by this function. This comprises the assign-
ment of a pointer to the SAL internal database to the package local variable
sal-db.

Arguments:

1. an internal database.

Return:

• the same value as the input argument.

103a 〈rf:init 103a〉≡ (110a)

(defun init (db)

;;(when rf-trace

;;(format t "rf:init: ~A" db)

;;(break))

(setf *sal-db* db))

sal-db

This is a package local variable that must be set to point to an internal database
before any of the RULE-FUNCS package functionality is accessed.

103b 〈*sal-db* 103b〉≡ (110a)

(defparameter *sal-db* ())

August 23, 2006 rule-funcs.nw 104

8.1.2 defrule (<args>)

This macro defines a rule, and loads it into the memory database.
The full profile of the defrule macro is:

(defmacro defrule (rule-name

applicable-att-lis

precedence

rule-arguments

&rest body)

Arguments:

1. the name of the rule as an un-quoted symbol,

2. list of attributes for which it should be applied, these are strings, except
for t which is used to indicate a general rule,

3. a number indicating precedence,

4. a list of formal arguments that will be the ones referenced in the rule’s
body. This list must be of length 2. The formal arguments should usu-
ally be called ’att’ and ’yr’, since the rule-function will be called with an
attribute and a year as arguments,

5. the rest is the body of the rule function.

Return:

• The rule’s definition as a lambda.

Example Calls:

(rf:defrule general (t) 5 (unused-1 unused-2)

(format t "General rule!~%")

(format t "the end."))

(rf:defrule example-printer-rule ("Cash flow" "Profit") 20 (att yr)

(format t "Example Printer Rule called:~%Attribute: ~S~%Year: ~S~%" att yr)

(format t "The end."))

The processing of a defrule call is as follows:

1. First, note that defrule is a macro, which means that it’s arguments are
not evaluated at the time of the call.

2. Processing begins by ensuring the the precedence is > 0. If it is not, then
an error is raised and processing aborts.

3. if the the precedence is valid, then a local variable f-def is initialized with
the rule-function’s definition built from the arguments,

August 23, 2006 rule-funcs.nw 105

4. next, the call is logged,

5. then, the function value of the rule-name symbol is set to the previously
constructed function definition,

6. then the symbol is made accessible from the RULE-FUNC package,

7. finally, a sugar function call is used in a mapping over all the applicable
attributes, associating the rule-function to the attribute at the specified
precedence,

8. at the end the function definition is returned for good measure.

Note: Care should be made in case of multiple calls with same rule-name
without undefining the rule, since the system will only maintain the first asso-
ciation that has been entered.

105 〈defrule 105〉≡ (110a)

(defmacro defrule (rule-name

applicable-att-lis

precedence

rule-arguments

&rest body)

(if (> precedence 0)

(let ((f-def ‘(lambda ,rule-arguments ,@body)))

(wut:log-it (format nil "defrule: ~S" rule-name))

(setf (symbol-function rule-name) (eval f-def))

(import rule-name "RULE-FUNCS")

(export rule-name "RULE-FUNCS")

(mapcar #’(lambda(target-att)

(apply-attribute-sugar

(if (eq target-att t)

()

target-att)

:rule rule-name

:prec precedence))

applicable-att-lis)

;;(when rf-trace

;;(format t "Definition of rule: ~A~%" rule-name)

;;(format t "~:@W~%" f-def)

;;(break))

f-def)

(error (concatenate

’string

"Defrule: precedence must be greater than zero!~%"

"Rule: ~S~%Precedence: ~S~%")

rule-name precedence)))

August 23, 2006 rule-funcs.nw 106

8.1.3 defreport (&rest att-lis)

This function takes an unspecified number of attributes, in the form of strings,
and sets them to be reported by SAL. The actual work is performed by the
helper function model-report-helper.

Arguments:

1. no specific number of arguments, all are assembled into a list for processing
by a helper function. The arguments should be strings.

Return:

• list of strings that were provided as arguments.

106a 〈defreport 106a〉≡ (110a)

(defun defreport (&rest att-lis)

(model-report-helper att-lis t))

8.1.4 model-report-helper (att-lis report?)

This helper function does the work of both defreport and defmodel.
The report? argument is t when helping a defreport call, and any other

TRUE value when helping defmodel. In all cases the return value is the same.
This simply applies the attribute’s sugar function with the appropriate argu-
ments making the attribute a model-attribute with or without reporting.

Arguments:

1. the list of attributes (as strings) to be declared model or reportable,

2. a boolean: if eq to t indicating that the attributes are to be reported, any
other TRUE value means that the attribute is a model attribute not to
be reported.

Return:

• The list of attributes.

106b 〈model-report-helper 106b〉≡ (110a)

(defun model-report-helper (att-lis report?)

(mapc #’(lambda(att)

;;(when rf-trace

;;(format t "model-att-helper: att: ~S report: ~S~%"

;; att report?)

;;(break))

(funcall (sgr:att-name-2-sugar-func att

sal-db)

:model report?))

att-lis))

August 23, 2006 rule-funcs.nw 107

8.1.5 defmodel (&rest att-lis)

This function takes an unspecified number of attributes, in the form of strings,
and sets them to be model-attributes NOT reported by SAL. The actual work
is performed by the helper function model-report-helper.

Arguments:

1. no specific number of arguments, all are assembled into a list for processing
by a helper function. The arguments should be strings.

Return:

• list of strings that were provided as arguments.

107a 〈defmodel 107a〉≡ (110a)

(defun defmodel (&rest att-lis)

;;(when rf-trace

;;(format t "Defmodel: ~S~%" att-lis)

;;(break))

(model-report-helper att-lis 1))

8.1.6 defdata (&rest data-lis)

This function is used to define data in SAL’s internal database. It takes any
tree-structure in which the leaves are tuples of the form ("toto" val date)

or ("titi" val), and loads them into the database. The function reports to
std-out all the data that has been rejected (there are some tests to ensure that
the data is well formed as well as the total number of loaded data. The actual
work is done by the helper function defdata-helper.

Arguments:

1. a tree with leave tuples of the form
(att val optional-year).

Return:

• the number of data loaded, which could be zero if none were loaded.

Note: the valmust be non-nil otherwise it will be rejected.

107b 〈defdata 107b〉≡ (110a)

(defun defdata (&rest data-lis)

;;(when rf-trace

;;(format t "Defdata: ~S~%" data-lis))

(let ((nb (defdata-helper data-lis)))

(wut:log-it (format nil "Data loaded: ~S" nb))

nb))

August 23, 2006 rule-funcs.nw 108

8.1.7 defdata-helper (data-tree)

This function recursively parses the tree of data provided by defdata. On the
way down the tree it explores the branches and when it finds a leaf, it delegates
to load-datum the work of loading the element into SAL’s internal database.

On the returns from the recursion, a number of elements loaded is provided.
These numbers are summed by means of an embedded call to reduce and #’+.

Arguments:

1. a tree with leaves of the form
(att val optional-year), or a number in the case of a recursive call.

Return:

• the number of data loaded.

This function processes using a selection on the argument:

1. If the argument is an empty list, then we have reached the end of the tree,
just return the number zero,

2. if the argument is a number, then we are in a recursive return, just pass
the number along,

3. if we have a list of lists, then we must handle two cases:

(a) if the list is of length 1, then we cannot use reduce, so we simply
continue the tree exploration on the single element of the list,

(b) otherwise, the list has more than one element, so we explore both the
car and the cdr and sum the returns by means of a reduce call with
an embedded +.

4. if the argument is a simple list, then it must be data. Delegate the loading
to load-datum which should return the number of data loaded.

108 〈defdata-helper 108〉≡ (110a)

(defun defdata-helper (data-tree)

;;(when rf-trace

;; (format t "defdata-helper: ~S~%" data-tree)

;; (break))

(cond

;; nothing to do, return ZERO

((null data-tree) 0)

;; if it’s a number, we’re recursing, just return it to be counted.

((numberp data-tree) data-tree)

;; a special case since we can’t run #’reduce on a list of length 1.

((and (listp (car data-tree))

(= 1 (length data-tree)))

(defdata-helper (car data-tree)))

;; data-tree is list of lists, map & reduce

((listp (car data-tree)) (reduce #’(lambda(l r)

August 23, 2006 rule-funcs.nw 109

;;(when rf-trace

;;(format t

;; "lambda~%l

;; ~S~%r ~S~%" l r)

;;(break))

(+ (defdata-helper l)

(defdata-helper r)))

data-tree))

;; ok, it’s a leaf-node, i.e. a datum!

(t (load-datum data-tree))))

8.1.8 load-datum (tuple)

This function is called to load a tuple of the form (att val optional-year)

into SAL’s internal database. It uses the attribute’s sugar function to do the
loading.

• If length is 2 then we have a fact,

• Otherwise, we have temporal data.

• If the value is nil, we reject it.

Arguments:

1. a tuple: (att val optional-year).

Return:

• 1 if the datum was successfully loaded, 0 otherwise.

109 〈load-datum 109〉≡ (110a)

(defun load-datum (tuple)

(let ((att (nth 0 tuple))

(val (nth 1 tuple))

(date (nth 2 tuple)))

;;(when rf-trace

;;(format t "Load-Datum: ~S~%" tuple)

;;(break))

(cond

;; is it valid?

((null val) (wut:log-it

(format nil "Nil datum rejected: ~S" tuple)) 0)

;; use the sugar, but check if it is a fact or a temporal-datum

(t (funcall (sgr:att-name-2-sugar-func att

sal-db)

(if date date t) :set val)

1))))

August 23, 2006 rule-funcs.nw 110

8.2 Physical Layout of the File

The package is ordered as per the following:

110a 〈rule-funcs.lisp 110a〉≡
;;; rule-funcs.lisp

〈lisp-header 143b〉
〈rule-funcs-pkg-def 102〉
〈rule-funcs-debugging-helpers 110b〉
〈*sal-db* 103b〉
〈rf:init 103a〉
〈defrule 105〉
〈model-report-helper 106b〉
〈defreport 106a〉
〈defmodel 107a〉
〈load-datum 109〉
〈defdata-helper 108〉
〈defdata 107b〉
〈eof 144〉

Debugging Helpers

110b 〈rule-funcs-debugging-helpers 110b〉≡ (110a)

;;(defparameter rf-trace ())

August 23, 2006 rule-funcs.nw 111

8.3 RULE-FUNCS Package History

2005 12 17: GF creation of the file.

2005 12 18: GF rewrite in new paradigm

2005 12 29: GF update to include rule-prec list and report-att-lis.

2005 12 30: GF update to added use-package “SUGAR” to eliminate “sgr:”
prefixes.

2006 01 11: GF update to move sugar-function-symbol to sugar.lisp, change
use-previous to use newly available function apply-attribute-sugar.

2006 01 15: GF update to implement defrule.

2006 01 18: GF update to implement defrule, defreport

2006 01 22: GF update to implement defdata,

2006 01 26: GF update to create an init, and db parameter for structural and
dependency reasons.

2006 02 03: GF minor updates after code-review; update defrule to prevent
rules with precedence == 0.

2006 02 07: GF commented out all tracing.

2006 02 09: GF removed references do dbs, as stock-data-structure is now
obsolete.

Chapter 9

Internal Data Structures

This is the description of SAL’s internal data structures.
SAL uses an in-memory database to store associations of the form attribute →

value and (attribute, year) → value. The former are known as factual and the
latter are called temporal or timely values.

This database is implemented as a hash-table whose key → value associa-
tions are specified as follows:

Primary Hash-Table

t → a list of model-attribute pairs,

nil → a list of universal rule tuples, meaning rule tuples which refer to rules
that are associated with all attributes. This list is ordered according to
increasing precedence values,

a string → a secondary hash-table.

Model-Attribute Pair

car a model attribute as a string,

cdr either t indicating that the model attribute should be reported, or nil if
not to be reported.

Rule Tuple

car a rule function,

cdr a numerical precedence value.

112

August 23, 2006 internal-data-structure.nw 113

Secondary Hash-Table

t → a value pair corresponding to the attribute’s (string key from primary
hash-table) value as a fact,

nil → a list of specific rule tuples, meaning rule tuples which refer to rules
that are associated with only this attribute. This list is ordered according
to increasing precedence values,

a year → a value pair corresponding the attribute’s (string key from primary
hash-table) value for year (as a number).

Value Pair

car any lisp object, the attribute’s value,

cdr a boolean, TRUE indicates that the value is projected, FALSE that it is
not projected, i.e. set from a data load or a manual user set operation.

The entire table looks like this:

primary hash-table:

Key Value

;t ((Model-Attribute-0 . report?) ... (Model-Attribute-n . report?))

;() (rule-tuple rule-tuple ...) ; universal rules

; increasing prec order

;string i.e. timely-attrribute-name or fact-name

secondary hash-table:

Key Value:

; t (value-n . p?)

; () (rule-tuple rule-tuple ...) ; increasing prec order

; year-0 (value . p?)

; ...

; year-n (value . p?)

Model-attribute-name can be either timely-attributes or facts,

where rule-tuples are of the form:

; (rule-func . precedence)

9.1 The INTERNAL-DATABASE-STRUCTURE

Package

The INTERNAL-DATABASE-STRUCTURE package provides symbols as per
the following package definition:

August 23, 2006 internal-data-structure.nw 114

113 〈internal-data-structure-pkg-def 113〉≡ (126)

;; provide a package to encapsulate the lowest level of database

;; functionality.

(defpackage "INTERNAL-DATA-STRUCTURE"

;; this pkg will access std lisp functions, only.

(:use "COMMON-LISP")

(:nicknames "IDS")

(:export "MAKE-DB"

"LOOKUP"

"GET-KEYS"

"MAP-MODEL-ATTS"

"GET-MODEL-ATTRIBUTES"

"GET-RULES"

))

(in-package "IDS")

9.1.1 make-db (&optional (level 1))

This function simply returns a lisp hash-table, with the :test set to the lisp func-
tion #’equal. Depending on the value of the argument, a primary or secondary
hash-table is initialized and returned. The argument value of “0” indicates a
primary hash-table, any other value indicates secondary hash-table.

The only difference between primary and secondary hash-tables is the initial
value that is associated with the key t :

primary hash-table the value t is initialized to nil,

secondary hash-table the value t is not initialized.

In both cases the value of the key nil is initialized to nil.
Arguments:

1. a value, if zero, then create a primary hash-table, otherwise create a sec-
ondary hash-table.

Return:

• the properly initialized hash-table.

114 〈make-db 114〉≡ (126)

(defun make-db (&optional (level 1))

(let ((ht (make-hash-table :test #’equal)))

(when (zerop level)

(setf (gethash t ht) ()))

(setf (gethash () ht) ())

ht))

August 23, 2006 internal-data-structure.nw 115

9.1.2 lookup (key-0 key-1 ht &key val p?)

This is the function providing the SQL-like access to data in the hash-table. It
performs both query and updating.

This function will fetch or set the database element depending on arguments
provided in the call.

The following semantics are applied to obtain or set a value.
In the following listing, the symbol “fetch” is used to indicate the function

that is used to fetch the value. We see that there are only 2 fetching functions
and 2 setting functions! How easy can it be!

The “Case ID’s” in the listing are references to cases handled by various
helper functions that lookup uses to perform the work.

Case

ID Key-0 key-1 fetch set

1: case of a model attribute

t n/a (gethash key-0 ht) (setf ’fetch

(ordered-instert val ’fetch))

2: case of a universal rule

() n/a idem idem

3: case of a factual attribute

string t (gethash key-1 (set ’fetch val)

(gethash key-0 ht))

4: case of an attribute’s rules

string () idem (setf ’fetch

(ordered-instert val ’fetch))

5: case of a timely attribute

string number idem (set ’fech val)

Arguments:

1. first-level key: nil and t are special values, otherwise strings expected. nil
refers to universal rules; t refers to model attributes ; a string refers to an
attribute name,

2. second level key: nil and t are special, otherwise numbers are expected.
nil refers to attribute specific rules; t refers to the attribute’s factual value;
a number refers to the year, i.e. second level key to select the attribute’s
timely value,

3. the hash-table containing the values to be fetched or set,

4. :val if not nil then set the attribute referenced by the keys to the pair
(val . p?), using the above described semantics.

August 23, 2006 internal-data-structure.nw 116

5. :p? a precedence or TRUE FALSE indicator to be consed after :val de-
pending on whether rules or model attributes are being assigned.

Return: In the case of a fetch operation

1. value,

2. t if found, nil otherwise.

In the case of a set operation:

1. value,

2. t.

The processing in this function is a dispatch to the cases as per described
above. We can see that the five cases are reduced to only three dispatches: cases
1 and 2 are assembled, as are cases 3 and 5. Case 4 remains singular.

116 〈lookup 116〉≡ (126)

(defun lookup (key-0 key-1 ht &key val p?)

(cond

((or (eq t key-0) ; case 1

(null key-0)) ; case 2

(gethash-case-1-2 key-0 ht val p?))

((null key-1) ; case 4

(gethash-case-4 key-0 ht val p?))

(t ; case 3 & 5

(gethash-case-3-5 key-0 key-1 ht val p?))))

August 23, 2006 internal-data-structure.nw 117

9.1.3 gethash-case-1-2 (key-0 ht val p?)

This is the processing of cases 1 and 2, i.e. either we are dealing with model
attributes or rule tuples. There isn’t much difference in the processing

1. First create the multiple-value-bind environment and use the lisp function
gethash to find the value and presence of a value for the primary hash-table
key key-0,

2. if there is a value argument provided, then we are in a set operation, so
cons the second value of the pair, i.e. p? onto the first to build the value
to be set, “s-val”,

3. continuing in the “set” case, set the hash-table value by adding the new
value pair to the previous list of values delegating the task of properly
inserting to ordered-insert for the WUT package,

4. finally, in both cases return the appropriate multiple values.

117 〈gethash-case-1-2 117〉≡ (126)

(defun gethash-case-1-2 (key-0 ht val p?)

(multiple-value-bind

(res found?) (gethash key-0 ht)

(if val

(let ((s-val (cons val p?)))

(setf (gethash key-0 ht)

(wut:ordered-insert s-val res))

(values s-val t))

(values res found?))))

August 23, 2006 internal-data-structure.nw 118

9.1.4 gethash-case-3-5 (key-0 key-1 ht val p?)

This is the processing of cases 3 and 5, i.e. either we are dealing with a factual or
timely attribute. This means that we must deal with the secondary hash-tables,
and specifically create one if needed.

1. First, delegate to create (if needed) a secondary hash-table associated with
key-0, i.e. the attribute string,

2. Now, if there is a val argument then use the same logic as in the preceding
gethash-case-1-2 to build the value pair, then associate it but without
the need for any insertion into lists since the value is a singleton, and
finally return the appropriate multiple values.

118 〈gethash-case-3-5 118〉≡ (126)

(defun gethash-case-3-5 (key-0 key-1 ht val p?)

(create-secondary-table key-0 ht)

(if val

(let ((s-val (cons val p?)))

(setf (gethash key-1 (gethash key-0 ht)) s-val)

(values s-val t))

(gethash key-1 (gethash key-0 ht))))

August 23, 2006 internal-data-structure.nw 119

9.1.5 gethash-case-4 (key-0 ht val p?)

This is the last case, the processing of attribute specific rules. This is a kind of
combination of the previous cases.

1. First, delegate to create (if needed) a secondary hash-table associated with
key-0, i.e. the attribute string,

2. if there is a value argument provided, then we are in a set operation, so
cons the second value of the pair, i.e. p? onto the first to build the value
to be set, “s-val”,

3. continuing in the “set” case, set the hash-table value by adding the new
value pair to the previous list of values delegating the task of properly
inserting to ordered-insert for the WUT package,

4. finally, in both cases return the appropriate multiple values.

119 〈gethash-case-4 119〉≡ (126)

(defun gethash-case-4 (key-0 ht val p?)

(create-secondary-table key-0 ht)

(multiple-value-bind

(rule-lis found?)

(gethash () (gethash key-0 ht))

(if val

(let ((s-val (cons val p?)))

(setf (gethash () (gethash key-0 ht))

(wut:ordered-insert s-val rule-lis))

(values s-val t))

(values rule-lis found?))))

August 23, 2006 internal-data-structure.nw 120

9.1.6 create-secondary-table (key-0 ht)

This little helper function checks for a value for the argument key-0 in the
hash-table ht and if no value is found, creates a secondary hash-table and sets
it to be the value.

Arguments:

1. a string key value for the the hash-table in second argument,

2. a hash-table perhaps containing a value associated with the first argument.

Return:

• nil if hash-table was already available, the hash-table otherwise.

120a 〈create-secondary-table 120a〉≡ (126)

(defun create-secondary-table (key-0 ht)

(multiple-value-bind

(unused found?) (gethash key-0 ht)

(declare (ignore unused))

(when (not found?)

(setf (gethash key-0 ht) (make-db)))))

9.1.7 get-keys (ht)

This simple function simply returns all the keys to the hash-table provided as
argument.

Arguments:

1. a hash table.

Return:

• the list of keys in the hash-table.

120b 〈get-keys 120b〉≡ (126)

(defun get-keys (ht)

(let ((res ()))

(maphash #’(lambda (key unused)

(declare (ignore unused))

(push key res))

ht)

res))

August 23, 2006 internal-data-structure.nw 121

9.1.8 map-model-atts (func-one-arg ht &optional report?)

Similar to the lisp mapping functions, this maps the “func-one-arg” (function
taking one argument) over all the model attributes and returns as multiple values
the results as well as the attributes. The optional boolean report? if TRUE
means that only model attributes with the cdr TRUE will be selected.

Arguments:

1. a function that takes exactly one argument, which is a hash-table con-
taining the values for that attribute, be they fact, rules, or timely. If this
argument is null, it is NOT applied,

2. the hash table containing the database,

3. a boolean, if TRUE only model-attribute pairs with cdr TRUE will be
selected for the application of the func-one-arg.

Return:

1. a list which contains the results of the function calls,

2. the list of the model attributes to which the function was applied.

The processing is done in 2 parts, first build the list of selected model at-
tributes, then apply the function to that list and collect all the results.

121 〈map-model-atts 121〉≡ (126)

(defun map-model-atts (func-one-arg ht &optional report?)

(let ((model-att-lis (mapcan #’(lambda(pair)

(if report?

(when (cdr pair) (list (car pair)))

(list (car pair))))

(lookup t ’unused ht))))

(values (when func-one-arg

(mapcar #’(lambda(model-att)

(funcall func-one-arg (gethash model-att ht)))

model-att-lis))

model-att-lis)))

August 23, 2006 internal-data-structure.nw 122

9.1.9 get-rules (att &key ht)

This function returns a list of all rules in precedence order that apply to the
attribute. This includes general and specific rules, or may be limited to only
general rules depending on attribute’s value. In any case, the multiple values
returned handle all the possible cases.

Arguments:

1. attribute as string of could be nil if only general rules are requested,

2. :ht a hash table (keyword argument).

Return:

1. all applicable rules,

2. specific rules for att.

This is straightforward, the only slight subtlety is the skimming off of the
precedence values by means of a mapping of the lisp function #’car over the
pairs returned by lookup.

122 〈get-rules 122〉≡ (126)

(defun get-rules (att &key ht)

(let ((gen-rule-lis (ids:lookup () () ht))

(specif-rule-lis (ids:lookup att () ht)))

(values (mapcar

#’car

(wut:map-ordered-insert gen-rule-lis specif-rule-lis))

(mapcar

#’car

specif-rule-lis))))

August 23, 2006 internal-data-structure.nw 123

9.1.10 get-model-attributes (&key ht report?)

This function returns a list of all model attributes selected as per boolean re-
port?. If report? is TRUE, then only the model attributes marked for report-
ing are returned, otherwise all are returned.

Arguments:

:ht a hash table,

:report? this is used to condition return to only “reporting” model attributes.
If it is TRUE then only the reporting attributes will be returned, otherwise
all model attributes will be returned

Return:

• The list of model attributes as per arguments.

The processing work is delegated to map-model-atts.

123 〈get-model-attributes 123〉≡ (126)

(defun get-model-attributes (&key ht report?)

(multiple-value-bind

(unused model-att-lis)

(ids:map-model-atts () ht report?)

(declare (ignore unused))

model-att-lis))

August 23, 2006 internal-data-structure.nw 124

9.2 Test Harness

124 〈internal-data-structure-test-harness 124〉≡ (126)

(defparameter *c-c-alis* ())

(setf *c-c-alis*

’(("Create an Internal DB:"

.

"(format t \"~S~%\" (setf db (ids:make-db 0)))")

("Declare timely-att-0 to be a model attribute not reported:"

.

"(format t \"~S~%\"

(ids:lookup t () db :val \"timely-att-0\"))")

("Declare fact-att-0 to be a model attribute reported:"

.

"(format t \"~S~%\"

(ids:lookup t () db :val \"fact-att-1\" :p? t))")

("Insert a general rule-0 prec 0:"

.

"(format t \"~S~%\"

(ids:lookup () () db :val \"gen-rule-0\" :p? 0))")

("Insert a general rule-1 prec 100:"

.

"(format t \"~S~%\"

(ids:lookup () () db :val \"gen-rule-1\" :p? 100))")

("Insert a \"fact-att-0\" value:\"John\" NOT projected:"

.

"(format t \"~S~%\"

(ids:lookup \"fact-att-0\" t db

:val \"John\" :p? nil))")

("Insert a rule for \"fact-att-0\" value:\"fa-0-rule-0\" prec: 20:"

.

"(format t \"~S~%\"

(ids:lookup \"fact-att-0\" () db

:val \"fa-0-rule-0\" :p? 20))")

("Insert a rule for \"fact-att-0\" value:\"fa-0-rule-1\" prec: 50:"

.

"(format t \"~S~%\"

(ids:lookup \"fact-att-0\" () db

:val \"fa-0-rule-0\" :p? 50))")

("Insert a \"fact-att-1\" \"GOOPY\" PROJECTED:"

.

"(format t \"~S~%\"

(ids:lookup \"fact-att-1\" t db

:val \"GOOPY\" :p? t))")

("Insert a \"timely-att-0\" year: 2000 value:200 NOT projected:"

.

"(format t \"~S~%\"

(ids:lookup \"timely-att-0\" 2000 db

:val 200 :p? nil))")

August 23, 2006 internal-data-structure.nw 125

("Insert a \"timely-att-0\" year: 2001 value:201 NOT projected:"

.

"(format t \"~S~%\"

(ids:lookup \"timely-att-0\" 2001 db

:val 201 :p? nil))")

("Insert a \"timely-att-0\" year: 2002 value:202 PROJECTED:"

.

"(format t \"~S~%\"

(ids:lookup \"timely-att-0\" 2002 db

:val 202 :p? t))")

("Insert a \"timely-att-0\" ta-0-rule-0 prec:30"

.

"(format t \"~S~%\"

(ids:lookup \"timely-att-0\" () db

:val \"ta-0-rule-0\" :p? 30))")

("Insert a \"timely-att-0\" ta-0-rule-1 prec:10"

.

"(format t \"~S~%\"

(ids:lookup \"timely-att-0\" () db

:val \"ta-0-rule-1\" :p? 10))")

("Examine the internal data structure:"

.

"(format t \"~S~%\" db)")

("Lookup all the name-report? pairs for the model attributes:"

.

"(format t \"~S~%\" (ids:lookup t () db))")

("Lookup all the general rules:"

.

"(format t \"~S~%\" (ids:lookup () () db))")

("Lookup \"fact-att-0\" "

.

"(format t \"~S~%\" (ids:lookup \"fact-att-0\" t db))")

("Lookup all rules for \"fact-att-0\" "

.

"(format t \"~S~%\" (ids:lookup \"fact-att-0\" () db))")

("Lookup \"timely-att-0\" for the year 2000: "

.

"(format t \"~S~%\" (ids:lookup \"timely-att-0\" 2000 db))")

("Lookup \"timely-att-0\" for the year 2001: "

.

"(format t \"~S~%\" (ids:lookup \"timely-att-0\" 2001 db))")

("Lookup \"timely-att-0\" for the year 2002: "

.

"(format t \"~S~%\" (ids:lookup \"timely-att-0\" 2002 db))")

("Get all rules for \"timely-att-0\" "

.

"(format t \"~S~%\" (ids:lookup \"timely-att-0\" () db))")

("Get all the keys:"

.

August 23, 2006 internal-data-structure.nw 126

"(format t \"~S~%\" (ids:get-keys db))")

("Apply the identity function to all model-attributes hash tables:"

.

"(format t \"~A~%\"

(multiple-value-bind

(res atts)

(ids:map-model-atts #’identity db)

(format nil \"~S~% ~S~%\" res atts)))")

("Apply the identity function to all report? model-attributes:"

.

"(format t \"~A~%\"

(multiple-value-bind

(res atts)

(ids:map-model-atts #’identity db t)

(format nil \"~S~% ~S~%\" res atts)))")

))

9.3 Physical Layout of the File

The package is ordered as per the following:

126 〈internal-data-structure.lisp 126〉≡
;;; internal-data-structure.lisp

〈lisp-header 143b〉
〈internal-data-structure-pkg-def 113〉
〈make-db 114〉
〈lookup 116〉
〈gethash-case-1-2 117〉
〈create-secondary-table 120a〉
〈gethash-case-3-5 118〉
〈gethash-case-4 119〉
〈get-keys 120b〉
〈map-model-atts 121〉
〈get-rules 122〉
〈get-model-attributes 123〉
〈eoc 143c〉
〈internal-data-structure-test-harness 124〉
〈eof 144〉

August 23, 2006 internal-data-structure.nw 127

9.4 INTERNAL-DATA-STRUCTURE Package
History

2005 12 08: GF creation of the file.

2005 12 11: GF tested ok!

2005 12 18: GF updated to ignore setting of null values, suppression of con-
fusing lookup keyword “set”,

2005 12 28: GF update to handle “package-defs.lisp” and correct name-space
problems.

2006 01 17: GF update to support the use of boolean in the model-attribute
pairs.

2006 02 01: GF made the test harness *C-C-ALIS* private to the IDS package.

2006 02 03: GF minor updates after code-review.

2006 02 09: GF transferred get-rules and get-model-attributes to this
file from stock-data-structure which has become obsolete.

2006 04 05: GF modified second return value of get-rules to eliminate the
pairs, returning only the rules in correct precedence order.

2006 05 18: GF created create-secondary-table to simplify processing and elim-
inate duplicated lines of code.

Chapter 10

SAL Utilities

This is the description of the WIG-UTIL package providing encapsulation of some
more or less general utility functions. Some of these are very general in their
nature while others are specialized for the SAL application.

10.1 Code elements

It should be noted that this package cannot load unless the package sal-config
has already been loaded. An error will be generated if this is attempted.

128 〈utilities package 128〉≡ (143a)

(defpackage "WIG-UTIL"

(:use "COMMON-LISP")

(:nicknames "WUT")

(:export "2STRING"

"ABS-YEAR"

"CURRENT-YEAR"

"LOG-IT"

"MAP-ORDERED-INSERT"

"MAPPEND"

"NUMLIST"

"ORDERED-INSERT"

"OUT-STREAM"

"PATH-GET"

"TEST"

"S-ASSOC"

))

(in-package "WIG-UTIL")

128

August 23, 2006 utilities.nw 129

10.1.1 2string (thing)

This function takes a lisp object and returns a sting representation of it. It
converts nil into the empty string. The ~A format instruction is used to perform
the conversion.

Arguments:

1. a lisp object.

Return:

• The resulting list.

129a 〈2string 129a〉≡ (143a)

(defun 2string(thing)

(format nil "~A" (or thing "")))

10.1.2 abs-year (y current-year)

Converts a relative date value, nil or t, into an absolute year value. If the
relative date is nil, then the result is the current year. If the relative date is t,
then the result is simply t, also.

Dates are considered relative iff y ≤ 100.
Arguments:

1. a date, nil, or t,

2. the current year as a number.

Return:

• An absolute year value.

129b 〈abs-year 129b〉≡ (143a)

(defun abs-year (y current-year)

(cond

((null y) current-year)

((eq y t) t)

((> y 100) y)

(t (+ y current-year))))

August 23, 2006 utilities.nw 130

10.1.3 cfg-pkg-name-eval (target-string)

This functions enables compilation and load of files that refer to sal-config pack-
age before the file sal-config is loaded. It reads the value of the variable corre-
sponding to the target string from the sal-config package such that the reference
can be loaded, without the package being present.

Arguments:

1. the sting name of the variable to be read.

Return:

• the value for the evaluation of that variable.

130a 〈cfg-pkg-name-eval 130a〉≡ (59 158a)

(defun cfg-pkg-name-eval (target-string)

(eval

(read-from-string

(concatenate ’string

"sal-cfg:"

target-string))))

10.1.4 current-year ()

Uses system time to return the current year as number.
Arguments: none.
Return:

• The current year as a number.

130b 〈current-year 130b〉≡ (143a)

(defun current-year()

(multiple-value-bind

(sec min hr date mn yr)

(get-decoded-time)

(declare (ignore sec min hr date mn))

yr))

August 23, 2006 utilities.nw 131

10.1.5 Logging: log-it (str &optional (on t))

The logging functionality is handled in a not obvious manner. This is due to
the fact that at the end of the main development we realized that logging could
be useful, but that the overhead should be controlled by an on/off toggle. The
implementation of the toggle, without disrupting the embedded logging calls
already in place lead to the implementation described below.

The place where logs are written is controlled by the variables defined in the
SAL-CONFIG file.

131 〈log-it 131〉≡ (143a)

(defun log-it (str &optional (on t))

(when on (progn (do-log "Logging started.")

(do-log str)))

(setf (symbol-function ’wut:log-it)

(if on #’logging

#’not-logging)))

August 23, 2006 utilities.nw 132

The normal use of logging is to send a string to the log by means of a call:

(log-it "String to log, with no ending new-line.")

Clever readers may have noticed the optional argument on which defaults
to TRUE. Indeed, at any time the logging can be toggled on or off by means of
this second argument.

So how does it work? If we look at the code, we see that the function
comprises two parts. First, if the condition on is TRUE, then there is a call
to the function do-log, sending it the message that logging has started. Next,
there is another call to do-log with the argument str, from the invocation of
log-it. All this is only if the argument on was TRUE.

Now look carefully at the next part which is executed in all cases. The
function value of the symbol log-it is set to a value depending on the value of
on. If TRUE, then the function value of log-it is set to the function logging.
Otherwise, it is set to the function not-logging.

NOTE: The return value of logging calls should not be considered as signifi-
cant.

Now you’re wondering, well then what happens to the function log-it that
we’re looking at? The answer is simple: GC. Yep, it gets garbage collected on
the next GC. But, but, but . . . how can this ever work? Well, it works because
of the code of the next two functions logging and not-logging.

Both of these take arguments as per log-it and as you saw above, they are
both called as log-it, but they are called under different circumstances.

The function logging is only called when logging is active. It will always log
the value of the argument str. Then, if the second toggle argument is TRUE,
the function simply returns TRUE. However, if the toggle is FALSE, then we
again see a re-assignment of the function value of the symbol log-it. This time
it is assigned to the function not-logging.

132 〈logging 132〉≡ (143a)

(defun logging (str &optional (on t))

(do-log str)

(if on t

(progn (do-log "Logging stopped.")

(setf (symbol-function ’log-it) #’not-logging))))

August 23, 2006 utilities.nw 133

If not-logging is called, under the name of log-it then we will see behavior
which is just the opposite of that of logging.

When it is called, it checks to see if the toggle argument is TRUE. This means
that logging must be switched on, the function value of log-it re-assigned, and
that the message must be logged. This should be clear.

133a 〈not-logging 133a〉≡ (143a)

(defun not-logging (str &optional (on nil))

(if on (progn

(setf (symbol-function ’log-it) #’logging)

(do-log "Logging started.")

(do-log str))

t))

Let’s now look at the actual logging execution. This is handled by the
function do-log. Remember, that this function is never called by anyone other
than by indirection under calls to the name log-it.

This function uses the SAL-CONFIG parameters to determine the target for
the log output. These can be either std-out, a file, or both.

Each log entry is prepended with the date and time. Log entries should be
provided to do-log without a trailing new-line since this character is automat-
ically appended on the log message string.

133b 〈do-log 133b〉≡ (143a)

(defun do-log(str)

(multiple-value-bind

(sec min hr date mn yr) (get-decoded-time)

(let ((output

(format nil

"[~A-~2,1,0,’0@A-~2,1,0,’0@A ~2,1,0,’0@A:~2,1,0,’0@A:~2,1,0,’0@A]: ~A~%"

yr mn date hr min sec str)))

(when sal-cfg:*io-log-to-stdout*

(format t output))

(when sal-cfg:*io-log-to-file*

(with-open-file

(stream

(path-get sal-cfg:*io-log-filename-string*

sal-cfg:*io-output-path-string*)

:direction :output

:if-exists :append

:if-does-not-exist :create)

(format stream output))))))

August 23, 2006 utilities.nw 134

10.1.6 mappend (fn &rest lists)

This is a non-destructive mapcan.
Arguments (as per mapcan):

1. a function,

2. as many lists as there are arguments to the function.

Return:

• The result of applying the function to the successive cars of the lists, all
appended together.

134a 〈mappend 134a〉≡ (143a)

(defun mappend (fn &rest lists)

(apply #’append (apply #’mapcar fn lists)))

10.1.7 numlist (start stop &optional (res ()))

This function returns a list of numbers on [start, stop]. There is no checking of
arguments so be sure that start ≤ stop !

Arguments:

1. starting point,

2. ending point,

3. accumulative result, not used by caller, only for tail recursion.

Return:

• The resulting list.

134b 〈numlist 134b〉≡ (143a)

(defun numlist (start stop &optional (res ()))

(declare (integer start stop))

(cond

((> start stop)())

((= start stop) (cons stop res))

(t (numlist start (1- stop) (cons stop res)))))

August 23, 2006 utilities.nw 135

10.1.8 Ordered Insertion of pairs in a-lists

ordered-insert (pair tail &optional (reversed-head ()))

Insert a value-pair into an ordered list of those same type of value-pairs. The
supported types for val are given below. The updated ordered list is returned.
The logic for insertion is:

pairs of type (function . number) the list is ordered by increasing numerical
order of the cdr’s. In case of equality, the value is just inserted, duplicate
cdr values are ok.

pairs of type (string . bool) all pairs are inserted in the ordering of first-in,
first in list.

It is assumed that the tail is already ordered according to the above logic.
If this is not the case, map-ordered-insert below may be used to order the list
by means of the call:

(map-ordered-insert tail ())

All elements must be compatible, there is no error checking.
Arguments:

1. A value-pair of type (string . genuine-bool) i.e. either: (string .

nil) or (string . t)

or of type (function . number).

2. A list of the same type of pair as that given in previous argument,

3. This is a tail-recursion argument used to accumulate the list elements
before returning the updated list.

Return:

• The updated list with val-pair properly inserted.

135 〈ordered-insert 135〉≡ (143a)

(defun ordered-insert (pair tail &optional (reversed-head ()))

(if (stringp (car pair)) (string-pair-insert pair tail reversed-head)

(number-pair-insert pair tail reversed-head)))

August 23, 2006 utilities.nw 136

number-pair-insert (pair tail reversed-head)

Inserts a pair (something . number) into an ordered list of those same type of
pairs. The logic is that the list is ordered by increasing numerical order of the
cdr’s. In case of equality, the pair is just inserted, duplicate cdr values are ok.

Arguments:

1. A value-pair of (function . number),

2. A list of the same type of pair as that given in previous argument,

3. This is a tail-recursion argument used to accumulate the list elements
before returning the updated list.

Return:

• The updated list with the pair properly inserted.

136a 〈number-pair-insert 136a〉≡ (143a)

(defun number-pair-insert (pair tail reversed-head)

(if (or (null tail)

(<= (cdr pair) (cdar tail)))

(do-insert-return pair tail reversed-head)

(number-pair-insert pair

(cdr tail)

(cons (car tail) reversed-head))))

string-pair-insert (pair tail unused)

Inserts a pair (string . bool) into a list of the same. Elements are inserted
in first-in, first in-list order. Duplicates are filtered. This only works if all model
attributes are inserted before ANY reporting model attributes !

Arguments:

1. Pair of (string . bool) to insert

2. Tail of list into which we insert.

3. Unused.

Return:

• The new list with pair properly inserted.

136b 〈string-pair-insert 136b〉≡ (143a)

(defun string-pair-insert (pair tail unused)

(declare (ignore unused))

(let ((tester #’(lambda(l r)

(string= (car l) (car r)))))

(append (remove pair

(remove (list (car pair)) tail :test tester)

:test tester)

(list pair))))

August 23, 2006 utilities.nw 137

do-insert-return (new tail reversed-head)

Inserts the NEW element at the head of the tail and put the head back in front,
returns the resulting list.

Arguments:

1. a lisp object,

2. a list,

3. the reversed head of the list.

Return:

• The list resulting by appending (reverse reversed-head) to (new tail).

137a 〈do-insert-return 137a〉≡ (143a)

(defun do-insert-return (new tail reversed-head)

(append (reverse reversed-head) (cons new tail)))

map-ordered-insert (lis-0 lis-1 &optional (res ()))

Perform the ordered insertion of all the elements in lis-0 into lis-1 and return
the resulting list. All elements must be compatible, there is no error checking.

Arguments:

1. a list of pairs to be inserted,

2. a list of pairs into which they will be inserted,

3. This is a tail-recursion argument used to accumulate the list elements
before returning the updated list.

Return:

• The updated list with all the elements of lis-0 properly inserted.

137b 〈map-ordered-insert 137b〉≡ (143a)

(defun map-ordered-insert (lis-0 lis-1 &optional (res ()))

(cond

((and (null lis-0) (null lis-1) res))

((null lis-0) (map-ordered-insert lis-1 () res))

(t (map-ordered-insert (cdr lis-0)

lis-1

(wut:ordered-insert (car lis-0)

res)))))

August 23, 2006 utilities.nw 138

10.1.9 out-stream (&key file-name-string path-string)

Return an open stream for writing, superseding any previous one, don’t forget
to close it when done writing. If either arg is nil, then t is returned.

Arguments:

1. file name as string

2. path as string

Return:

• either an open stream, or t.

138a 〈out-stream 138a〉≡ (143a)

(defun out-stream (&key

file-name-string

path-string)

(if (not (and file-name-string path-string)) t

(open (path-get file-name-string

path-string)

:direction :output

:if-exists :supersede

:if-does-not-exist :create)))

10.1.10 path-get (file-name path-string)

Return a PATHNAME object built from the arguments. There is no error
checking.

Arguments:

1. a file-name as string,

2. a path as string ending in slash (or anti-slash on Windoz).

Return:

• a PATHNAME object corresponding to arguments.

138b 〈path-get 138b〉≡ (143a)

(defun path-get (file-name path-string)

(pathname

(concatenate ’string

path-string

file-name)))

August 23, 2006 utilities.nw 139

10.1.11 Automatic Testing Suite: test (pkg-name)

The following variable and functions implement the automatic testing suite.
To test a package, define a package private local parameter named *c-c-alis*

which contains pairs of the form: (comment . executable-expression).
These pairs should be such that the comment describes the action that

will take place in the execution of the cdr. The test execution function test,
sequentially displays each car on std-out, then it evaluates the cdr which should
be wrapped in a format statement if the result is to be displayed.

For example, to test the package “TOTO” we would use the following call
(note that case of the package name is not significant.):

(wut:test "toto")

test (package-name-as-string)

The function test is the entry point to the testing suite. It takes a package name
as argument and runs the package’s tests. It records the results of execution into
a file named “dribble.lisp” and times the entire test for benchmarking purposes.

It uses the function p-name-2-test-alis to transform the package name
argument into a name of the form PACKAGE::*c-c-alis*.

Arguments:

1. a package names as a string.

Return:

• The result of the call to time which wraps the mapc over the execution
of the pairs in the *c-c-alis*.

139 〈test 139〉≡ (143a)

(defun test (package-name-as-string)

(let ((cc-alis ‘(("Starting dribble." . "(wut::drib)")

,@(p-name-2-test-alis package-name-as-string)

("Stopping dribble." . "(wut::drib nil)")

)))

(time

(progn

(mapc #’(lambda (pair)

(comment-exec pair))

cc-alis)

(log-it (format nil "End of test."))))))

August 23, 2006 utilities.nw 140

comment-exec (pair)

This does the work of printing to std-out the car and cdr of the pair, then
executes the cdr. The cdr should have its own format statement if the output
is to be visible and dribbled.

Arguments:

1. a pair of strings, the cdr must be an executable lisp statement as a string.

Return:

• The result of evaluating the cdr of the pair.

140a 〈comment-exec 140a〉≡ (143a)

(defun comment-exec (pair)

(format t "~%;;; ~A~%;;; ~A~%" (car pair) (cdr pair))

(eval (read-from-string (cdr pair))))

p-name-2-test-alis (pname)

This takes a package name as a string, not case-sensitive and returns the value
of the package’s *C-C-ALIS*. Yes, I meant the value!

Arguments:

1. a string package name, not case sensitive.

Return:

• the evaluation of PNAME::*C-C-ALIS*.

140b 〈p-name-2-test-alis 140b〉≡ (143a)

(defun p-name-2-test-alis (pname)

(let ((pn (string-upcase pname)))

(eval (read-from-string

(concatenate ’string pn "::*C-C-ALIS*")))))

drib (&optional (on? t)(path sal-config:*io-output-path-string*))

The implementation of dribbling is slightly more subtle than one would expect.
This is due to the way lisp considers it an error to turn dribbling on if it is
already on, or off it is already off. Despite that little difficulty, this function is
straightforward;

The package private parameter *dribbling?* is used to maintain the state of
dribbling.

140c 〈drib 140c〉≡ (143a) 141 ⊲

(defvar *dribbling?* nil)

August 23, 2006 utilities.nw 141

The function drib takes some arguments that can be used to toggle on/off
and to direct the output to a specific directory. Note that the default directory
depends on the availability of the package sal-config.

If dribbling is being turned on, this builds a pathname by a call to path-get,
then logs a “start dribbling” message.

If dribbling is being turned off, then it is stopped and a “Stopped dribbling
to wherever” message is logged, and it returns.

Arguments:

1. a boolean toggle TRUE is on, FALSE is off,

2. a string path to where the file dribble.lisp should be written.

Return:

• Not Significant.

141 〈drib 140c〉+≡ (143a) ⊳ 140c

(defun drib (&optional (on? t) (path sal-config:*io-output-path-string*))

(let ((pathname (path-get "dribble.lisp" path)))

(cond

(on?

(ignore-errors (dribble))

(setf *dribbling?* t)

(dribble pathname)

(log-it (format nil "Dribbling to ~A" pathname)))

(*dribbling?*

(setf *dribbling?* ())

(dribble)

(log-it (format nil "Stopped dribbling to ~A" pathname)))

(t ()))))

August 23, 2006 utilities.nw 142

10.1.12 s-assoc (str-target s-alis)

Super string assoc: works like assoc, but str-target must be a string and
s-alis must contain pairs of form (string . value) or (string-list . value) or (t
. value).

str-target matches pair if either:

• str-target and (car pair) are same string,

• str-target is member of (car pair)

Arguments:

1. a string

2. an a-list as per above

Return:

• if match, as per above, the pair in arg-2 that corresponds to match.

• if no match, nil.

142 〈s-assoc 142〉≡ (143a)

(defun s-assoc (str-target s-alis)

(assoc-if

#’(lambda(key)

(or (and (atom key)

(equal str-target key))

(and (listp key)

(member str-target key :test #’equal))))

s-alis))

August 23, 2006 utilities.nw 143

10.2 Physical Layout of the File

The package is ordered as per the following

143a 〈utilities.lisp 143a〉≡
;;; utilities.lisp

〈lisp-header 143b〉
〈utilities package 128〉
〈s-assoc 142〉
〈path-get 138b〉
〈out-stream 138a〉
〈do-log 133b〉
〈logging 132〉
〈not-logging 133a〉
〈log-it 131〉
〈numlist 134b〉
〈mappend 134a〉
〈2string 129a〉
〈drib 140c〉
〈test 139〉
〈comment-exec 140a〉
〈p-name-2-test-alis 140b〉
〈do-insert-return 137a〉
〈number-pair-insert 136a〉
〈string-pair-insert 136b〉
〈ordered-insert 135〉
〈map-ordered-insert 137b〉
〈abs-year 129b〉
〈current-year 130b〉
〈eoc 143c〉
〈utilities-test-harness 145〉
〈eof 144〉

143b 〈lisp-header 143b〉≡ (59 98b 110a 126 143a 152e 158a)

;;;

;;; This file was generated by noweb. Do not edit. Only edit the

;;; source file and regenerate.

;;; author : Gratefulfrog: gf_at_gratefulfrog_dot_net

;;; license : GPL http://www.gnu.org/licenses/gpl.html

;;;

143c 〈eoc 143c〉≡ (59 98b 126 143a)

;;;

;;; End of Code

;;; Test harness follows

;;;

August 23, 2006 utilities.nw 144

144 〈eof 144〉≡ (59 98b 110a 126 143a 152e 158a)

;;;

;;;

;;; End of File

;;;

;;;

August 23, 2006 utilities.nw 145

10.3 Package Test Harness

145 〈utilities-test-harness 145〉≡ (143a)

(defparameter *c-c-alis* ())

(setf *c-c-alis*

’(("Insert into empty."

.

"(format t \"~S~%\" (wut::ordered-insert (cons 1 1) ()))")

("Insert first:"

.

"(format t \"~S~%\" (wut::ordered-insert (cons 1 0)

(list (cons 1 1) (cons 1 2))))")

("Insert middle:"

.

"(format t \"~S~%\" (wut::ordered-insert (cons 1 1)

(list (cons 1 0) (cons 1 2))))")

("Insert End:"

.

"(format t \"~S~%\" (wut::ordered-insert (cons 1 1)

(list (cons 1 0) (cons 1 0.5))))")

("Insert String:"

.

"(format t \"~S~%\" (wut::ordered-insert (list \"abc\")

’((\"a\" . t) (\"ab\") (\"abd\" . t) (\"xx\"))))")

("Insert pair:"

.

"(format t \"~S~%\" (wut::ordered-insert ’(\"toto\" . t)

’((\"a\" . t)(\"b\") (\"toto\") (\"zeta\" . t))))")

("Insert pair:"

.

"(format t \"~S~%\" (wut::ordered-insert ’(\"toto\")

’((\"a\" . t)(\"b\") (\"toto\") (\"zeta\" . t))))")

("Insert pair:"

.

"(format t \"~S~%\" (wut::ordered-insert ’(\"toto\")

’((\"a\" . t)(\"b\") (\"toto\" . t) (\"zeta\" . t))))")

("Insert pair:"

.

"(format t \"~S~%\" (wut::ordered-insert ’(\"totot\")

’((\"a\" . t)(\"b\") (\"toto\") (\"zeta\" . t))))")

("Insert pair:"

.

"(format t \"~S~%\" (wut::ordered-insert ’(\"toto\")

’((\"a\" . t)(\"b\") (\"zeta\" . t))))")

("Map Insert :"

.

"(format t \"~S~%\"

(wut:map-ordered-insert (list (cons 1 1) (cons 2 2))

(list (cons 10 1) (cons 20 2))))")

))

August 23, 2006 utilities.nw 146

August 23, 2006 utilities.nw 147

10.4 Utilities Package History

2005 11 18: GF Creation

2005 12 02: GF added funcs to make name conversions for Blakey’s sugar
factory.

2005 12 11: GF tested ok!

2005 12 16: GF updated ordered-insert to handle strings + pairs; updated
tests.

2005 12 18: GF changed string-2-function-name to sugar-function-name, it
can now handle t and nil as arguments.

2005 12 18: GF updated abs-year to handle ’t’ as argument; updated ¡-cdr
to handle null cdrs

2005 12 28: GF update to handle package-defs.lisp and correct name-space
problems.

2006 01 18: GF update to <-cdr to ensure that only numbers compare with
numerical ’<’.

2006 01 19: GF update to ordered-insert to handle comparison of t to nil,
and non duplication of pairs with t or nil ; it works!

2006 01 24: GF update to create and perfect log-it.

2006 01 26: GF update to create remove-package, current-year, out-stream.

2006 01 27: GF update to create path-get.

2006 01 29: GF update to fix general-compare, include drib, reposition path-get

at top of file.

2006 02 01: GF Re-wrote ordered-insert, properly, but now only handles
pairs! Updated comment-exec for extra new-line after comments, put
in some explanation of the function. Updated p-name-2-test-alis to
work with non-exported alists and put in some comments to explain the
function. Updated sugar-function-name to reject strings with embedded
hyphens, e.g. ”This-will-be-rejected.” Updated remove-double-spaces to
handle empty strings and added some explanation.

2006 02 03: GF new version of log-it allowing for toggling.

2006 02 07: GF new version of ordered-insert to handle report-attributes
ordering according to order in defreport.

2006 02 08: GF creation of s-assoc for use in a-list parsing.

August 23, 2006 utilities.nw 148

2006 02 13: GF creation of the literate version of this file for better documen-
tation and maintenance.

2006 02 19: GF first literate version of this file completed and tested OK!

2006 02 22: GF simplified do-log to get rid of useless call to concatenate;
Corrected a typo; changed order of function in ordered-insert section.

Chapter 11

SAL Configuration

This is the description of the SAL-CONFIG package providing encapsulation of
all the configuration parameters used in SAL.

This file contains all sal configuration data. This data is divided according
to the following types:

• Build & Install data: these are prefixed bi,

• Stock Model data: these are prefixed sm,

• Input-output data: these are prefixed io.

11.1 The SAL-CONFIG Package

The following code chunk defines the package and the exported symbols. All
symbols are simple variables which are used in various places throughout the
SAL code.

149 〈sal-config package 149〉≡ (152e)

(defpackage "SAL-CONFIG"

(:use "COMMON-LISP")

(:nicknames "SAL-CFG")

(:export "*SM-MODEL-PATH-STRING*"

"*SM-MODEL-FILENAME-STRING*"

"*SM-INDUSTRY-RULEFILE-STRING-ALIST*"

"*SM-DEFAULT-INDUSTRY*"

"*IO-OUTPUT-PATH-STRING*"

"*IO-LOG-FILENAME-STRING*"

"*IO-LOG-TO-FILE*"

"*IO-LOG-TO-STDOUT*"

"*BI-SYS-PATH-STRING*"

"*BI-SRC-PATH-STRING*"

"*BI-BIN-EXTENSION-STRING*"

"*BI-SRC-FILENAME-STRING-LIST*"

149

August 23, 2006 sal-config.nw 150

))

(in-package "SAL-CONFIG")

11.1.1 Build & Install data

Build & Install data are prefixed bi.
This is the directory where the all the lisp source files are available:

150a 〈build-install data 150a〉≡ (152e) 150b ⊲

(defparameter *bi-src-path-string* "〈src-file-path 3b〉")
; "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/V7.0/")

This is the directory where the all compiled system files will be stored:

150b 〈build-install data 150a〉+≡ (152e) ⊳ 150a 150c ⊲

(defparameter *bi-sys-path-string* "〈bin-file-path 3c〉")
; "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/bin/")

This parameter contains the extension that the Lisp system uses to identify
binary lisp files. This definition technique will work for CMU and GNU Common
Lisp. For other Lisps, please update appropriately.

150c 〈build-install data 150a〉+≡ (152e) ⊳ 150b 150d ⊲

(defparameter *bi-bin-extension-string*

(let ((sys (lisp-implementation-type)))

(cond

((string-equal sys "CLISP") ".fas")

((string-equal sys "CMU Common Lisp") ".x86f")

((error "Unknown Lisp implementation type! ~S~%" sys)))))

This is the list of all the source files in system. There should be no need to
update this parameter.

150d 〈build-install data 150a〉+≡ (152e) ⊳ 150c

(defparameter *bi-src-filename-string-list*

’("utilities.lisp"

"internal-data-structure.lisp"

"sugar.lisp"

"rule-funcs.lisp"

"sal.lisp"))

August 23, 2006 sal-config.nw 151

11.1.2 Stock Model Data

Stock Model data are prefixed sm. They are configurable and will require user
settings. The actual values given below are examples. Some will certainly have
to be changed for the installed system, others may be ok as they stand.

The first defines the path to the directory where all model and rule files are
stored.

151a 〈stock-model-data 151a〉≡ (152e) 151b ⊲

(defparameter *sm-model-path-string* "〈model-rule-path 3d〉")
; "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/Examples/")

The next parameter is the name of the file containing the definition of the
model attributes.

151b 〈stock-model-data 151a〉+≡ (152e) ⊳ 151a 151c ⊲

(defparameter *sm-model-filename-string* "〈mode-filename 4a〉")
; "model.lisp")

This next variable is an a-list mapping industries to rule-files. The keys and
the file-names ARE case sensitive. CAR values may be t, a single string, or a list
of strings. CDR values may be both single file-names and lists of file-names. A
key value of t indicates that the rule-file(s) in the cdr should be loaded in all
cases.

151c 〈stock-model-data 151a〉+≡ (152e) ⊳ 151b 151d ⊲

(defparameter *sm-industry-rulefile-string-alist*

’(("BANK" . "bank-rules.lisp")

(("COMPUTER" "MANUFACTURING") . ("computer-rules.lisp"

"manufacturing-rules.lisp"))

(t . "default-rules.lisp")))

This next parameter defines the the default value for the industry, in case
the data loaded doesn’t define an industry. This will NOT stop a unknown
industry from being defined. If that happens, only the default rules as defined
by the key t in *sm-industry-rulefile-string-alist* will be loaded.

151d 〈stock-model-data 151a〉+≡ (152e) ⊳ 151c

(defparameter *sm-default-industry* "COMPUTER")

August 23, 2006 sal-config.nw 152

11.1.3 Input & Output data

Input and output data are prefixed io. These are configurable and will require
user settings.

This is the path to the directory where the system will write any output
during execution:

152a 〈input-output data 152a〉≡ (152e) 152b ⊲

(defparameter *io-output-path-string* "〈io-path 4b〉")
; "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/Output/")

This is the file where the system will write any log output during execution.
This file will be written to the directory specified in *io-output-path-string*.

152b 〈input-output data 152a〉+≡ (152e) ⊳ 152a 152c ⊲

(defparameter *io-log-filename-string* "〈log-filename 4c〉")
; "sal-log.out")

If the following parameter is set to t, then all logs will be written to the
io-log-filename. Note: this parameter and *io-log-to-stdout* are not
mutually exclusive. Any combination of TRUE and FALSE values is acceptable
for them.

152c 〈input-output data 152a〉+≡ (152e) ⊳ 152b 152d ⊲

(defparameter *io-log-to-file* t)

If the following parameter is set to t, then all logs will be written to std-out.

152d 〈input-output data 152a〉+≡ (152e) ⊳ 152c

(defparameter *io-log-to-stdout* nil)

11.2 Physical Layout of the File

The package is ordered as per the following

152e 〈sal-config.lisp 152e〉≡
;;; sal-config.lisp

〈lisp-header 143b〉
〈sal-config package 149〉
〈stock-model-data 151a〉
〈input-output data 152a〉
〈build-install data 150a〉
〈eof 144〉

August 23, 2006 sal-config.nw 153

11.3 Sal-Config Package History

2006 02 03: GF minor updates after code-review.

2006 02 08: GF added industry- rule-file associations to test multiple associ-
ations.

2006 02 09: GF updated documentation of *sm-industry-rulefile-string-alist*.
Removed reference to the file stock-data-structure.lisp which has become
obsolete.

Chapter 12

The Sal Builder

The SAL-BUILD packages provides building and installation support for SAL.

12.1 The SAL-BUILD Package

The package exports only one symbol: make-install. The end user will proba-
bly never call this function directly. It is called in the SAL Makefile (cf. section 5
on page 32).

154 〈sal-build-pkg-def 154〉≡ (158a)

(defpackage "SAL-BUILD"

;; provide a package to encapsulate the database functionality

(:nicknames "SAL-BLD")

(:use "COMMON-LISP")

(:export "MAKE-INSTALL"

))

(in-package "SAL-BUILD")

154

August 23, 2006 sal-build.nw 155

12.1.1 load-config (cfg-pathname)

This function is defined below. The reader should note that this function is also
defined in the SAL package (cf. section 6.6 on page 59)1.

Argument:

1. Full pathname, NOT STRING path, to config file.

Return:

• t if successful, nil if failure

This will attempt to load the config file. If it is not found, the user is
prompted to enter a new path to the config file.

155 〈load-config 155〉≡ (59 158a)

(defun load-config (cfg-pathname)

(if (probe-file cfg-pathname)

(load cfg-pathname)

(progn (format t "Config file not found: ~A~%" cfg-pathname)

(format t "Enter full path to config file or return to exit:~%")

(format t "> ")

(let ((new-path (read-line)))

(if (string= new-path "") nil

(load-config (pathname new-path)))))))

1Literate Programming tools allow us to define the function only once and then to include
it in as many source files as required!

August 23, 2006 sal-build.nw 156

12.1.2 make-install (config-file-pathname-string &key (ver-
bose t))

This function first loads the config file. It then compiles all the SAL source
files as defined in the config file. Finally, it installs the binaries in the target
directories and loads them.

Arguments: Arguments:

1. full path string to the sal-config file.

2. :verbose optional, if t, then compiling and loading output are sent to
std-out.

Return:

• the extension of the compiled file,

• the list of files installed.

The compiling and loading are delegated to do-compile-load.

156 〈make-install 156〉≡ (158a)

(defun make-install (config-file-pathname-string &key (verbose t))

(load-config (pathname config-file-pathname-string))

(values

(do-compile-load

:src-file-string (car (cfg-pkg-name-eval "*bi-src-filename-string-list*"))

:src-path-string (cfg-pkg-name-eval "*bi-src-path-string*")

:dest-path-string (cfg-pkg-name-eval "*bi-sys-path-string*")

:verbose verbose)

(mapc #’(lambda(f)

(do-compile-load

:src-file-string f

:src-path-string (cfg-pkg-name-eval "*bi-src-path-string*")

:dest-path-string (cfg-pkg-name-eval "*bi-sys-path-string*")

:verbose verbose))

(cfg-pkg-name-eval "*bi-src-filename-string-list*"))))

August 23, 2006 sal-build.nw 157

12.1.3 do-compile-load (<args>)

Keyword Arguments:

:src-file-string a string name of the file to compile,

:src-path-string a string path to the file to compile,

:dest-path-string a string path to the target directory for the compiled file to
reside.

:verbose bool if t verbosely compile and load, otherwise silent.

This function compiles the file argument from the src path, into the dest
path, with verbose as per argument. It then loads the compiled file. It returns
the extension of the compiled file.

Return:

• extension of the compiled file, including the leading “.” e.g. “.fas”.

157 〈do-compile-load 157〉≡ (158a)

(defun do-compile-load (&key

src-file-string

src-path-string

dest-path-string

verbose)

(let ((pathname (compile-file

(pathname

(concatenate ’string

src-path-string

src-file-string))

:output-file (pathname dest-path-string)

:verbose verbose

:print verbose)))

(load pathname :verbose verbose :print verbose)

(pathname-type pathname)))

August 23, 2006 sal-build.nw 158

12.2 Physical Layout of the File

The package is ordered as per the following:

158a 〈sal-build.lisp 158a〉≡
;;; sal-build.lisp

〈lisp-header 143b〉
〈sal-build-pkg-def 154〉
〈sal-build-debugging-helpers 158b〉
〈load-config 155〉
〈do-compile-load 157〉
〈cfg-pkg-name-eval 130a〉
〈make-install 156〉
〈eof 144〉

158b 〈sal-build-debugging-helpers 158b〉≡ (158a)

;(load "/home/bob/Desktop/Programming/lisp/StockEvaluator/Work/V7.0/sal-build.lisp")

12.3 SAL-BUILD Package History

2006 01 23: GF creation of the file.

2006 01 24: GF creation of load-config, make-install, sal.

2006 01 26: GF update do-compile to do-compile-load

2006 01 29: GF looks good! can build and load without problem.

2006 02 03: GF minor updates after code-review.

2006 02 06: GF minor updates, added “:print verbose” in calls to “load.”

2006 03 11: GF update to make config parameters arguments to make-install,
and to eliminate the need for pre-loading of sal-config file.

Chapter 13

Outstanding Issues

This list traces the defects and other issues that were encountered during the
development of SAL.

1. CANCELLED:
Use the automatic documentation system create-user-manual to document
the source, but read the instructions first!

2. DONE:
Write “How-to configure files prior to building, or when moving system.”

3. DONE:
Write “How-to make-install.”

4. DONE:
Write “How-To Write a simple Rule”.

5. DONE:
Write “How-To Write a generic (multi-attribute) Rule”.

6. DONE:
Re-write the quick start section after most of these changes have been
proven correct.

7. CANCELLED:
update installation instructions to include the setting of the config file
name and path in:

(a) sal.lisp,

(b) sal-build.lisp,

(c) sal-config.lisp.

8. DONE:
Create testing targets in makefile and automates these by inclusion of

159

August 23, 2006 closing.nw 160

noweb chunks appropriately. Finish this for (wut:test ‘‘sal’’) make-
file needs to be finalized, using a loop for all the tests. Test targets could
be:

(a) all-test,

(b) sal-test,

(c) ids-test,

(d) etc.

9. DONE:
integrate the config path into the literate program so that it loads directly.
This will mean 2-phased make: make makefile, then make ; make install.

10. DONE:
be sure to share the definition of load-config in both build-sal.lisp and
sal.lisp, and to share the definition of the config-path in build-sal.lisp,
sal.lisp and in the makefile.

11. DONE:
Fix error: “Unknown control sequences: \nobreakspace” on make doc.

12. CANCELLED:
Integrate the literate programming technique into this document to im-
prove the link between documentation and source code.

13. DONE:
clean up utilities.lisp, move some things to sugar.lisp, document in literate
style.

14. DONE in v6.9.1:
Restructure directories for devt. separating all Examples and Config from
development.

15. DONE in V6.9:
Repair defect in create-sugar-function where
(attribute-sugar-function ‘‘CURRENT YEAR’’) is called, but in fact
not evaluated to return the current year value. This means wrapping the
call in a funcall call. No big problem, but a real defect!

16. DONE in V6.9:
Create sgr:industry placeholder function.

17. DONE in V6.9:
Provide out-file-name argument for sal:process find solution for file
names for tickers of odd form.

18. DONE:
Provide script to configure paths at each installation.

August 23, 2006 closing.nw 161

19. DONE:
Improve sal:process and sal:report simplify and separate functionality

20. DONE:
Remove stock-data-structure completely from SAL, move functions to ids,
correct all calls in sugar.lisp and sal.lisp. Retest fully!

21. DONE:
Enable multiple industry to multiple rule file association in processing of
sal-config.lisp

22. DONE:
SEE 25 below for way of doing this with a closure and a function! Provide
loop detection in rule firings: This remains difficult to implement in an
elegant manner. I hesitate to use a package global variable. I also hesitate
to put a new slot in the stock-database-struct, and change all the calls
to the parse functions to use the dbs instead of the ht as argument. It
seems hard to find a good solution. Suppose that exec-sugar knows about
a package global-variable if the value is zero just before the call to funcall,
then the table with rule-firings is reset to empty. Then the counter is
incremented at each funcall, and decrements it on return. If the value is
Zero then the rule-firings table is reset to empty. Meanwhile, in somerule,
we check that the rule being fired with its arguments is not already in the
rule-firing table, if it is we abort the execution. This should be integrated
into the stock-database-struct, along with the sugar-function-lis.

23. DONE:
load report attributes in list order provided by call to defreport. One
potentially possible way to do this would be to use the cdr of the model-
attributes to be an ordering value, i.e. 0, 1, 2... instead of simply ’T’.
Then on report generation, the reporting attributes could be sorted prior
to mapping over them. This looks like it requires some mall modifications

(a) sgr:parse-2-model to handle the order number,

(b) rf:defreport to pass the order number,

(c) sds:get-model-attributes to sort on cdrs, by passing the #’function
that returns pair if cdr is number or nil otherwise function to map-
model attributes, then filtering the results for not null, to get the
pairs of (report-att . order-number), then sorting on cdrs.

(d) sal:process to call the sorted version of get-model-attributes list on
the cdrs?

24. CANCELLED:
This has proven to be infeasible after testing in sal.1.lisp

and sal-build.1.lisp. See if it’s not possible to use compiled rule-
files. This is a modification to the load-rules-helper to (load (compile-file
file.lisp) and logit! all this in sal.lisp.

August 23, 2006 closing.nw 162

In sal.lisp, line 145 we are loading the src version of the rule files, not the
compiled version as one may have hoped. Why is this? can it be improved?
If it can not be changed, then update comments in key-2-pathname-lis.

25. DONE:
used a closure to encapsulate the dbs and thus enable cleanup of the sugar
functions without a global variable! This may be the way to handle loop
detection too.
Remove the *sugar-function-lis* from sugar.lisp and use keys + model
attribute instead as means for tracking sugar functions. This simplifies
the tracking and is far more elegant.

26. perform all the corrections resulting from the code-review:

(a) DONE:
fixed a lot of things! improved performance too!
corrected bug in sugar-function-creation,
sugar.lisp

(b) DONE:
computer-rules.lisp

(c) DONE:
default-rules.lisp

(d) DONE:
internal-data-structure.lisp

(e) DONE:
model.lisp

(f) DONE:
rule-funcs.lisp

(g) ALL DONE
DONE:
logging toggle switch in sal:process, page 21 of print-out,
sal.lisp

(h) DONE:
sal-build.lisp

(i) DONE:
sal-config.lisp

(j) DONE:
stock-data-structure.lisp

(k) DONE:
utilities.lisp

27. DONE:
create an exported function in sugar package to get the sugar function
from the attribute name string

August 23, 2006 closing.nw 163

(defun attribute-sugar-function-from-name (att-name)

(symbol-function (sugar-function-symbol att-name)))

28. DONE:
Improve logging, with toggle as per log-it.lisp in V6.6. Also, find a way of
logging the rule firing for debugging purposes.

29. DONE:
Update sal:process to inform if zero data are loaded.

30. DONE:
Provide fault tolerance during an analysis run, as well as logging of all
analysis to a log file. Use “error” everywhere since Blakey catches all
errors in his own processing!

31. DONE:
detect embedded hyphens in attribute names and reject for sugar function
creation.

32. DONE:
repair or re-write ordered-insert so that it can be understood by humans,

33. DONE:
make all *C-C-ALIS* private package variables.

34. DONE:
But changed to write a default tuple (“INDUSTRY *default-industry-
from-config*)
This Write default-industry rule so that a rule-file will always be loaded,
even if the data tuple (industry ‘‘toto’’) is absent.

35. DONE:
Write interface functions to Blake’s database calls:

(blake-get-data (string-downcase (sgr:ticker t))

(blake-get-rule-file-name (string-downcase (sgr:industry t))

36. DONE:
Replace all information calls to format with logging calls! Consider log-
ging output choices like *standard-output* *terminal-io* *error-output*.

37. DONE:
Cleanup

(a) DONE:
“sal-config.lisp”

(b) DONE:
“sal-build.lisp”

August 23, 2006 closing.nw 164

(c) DONE:
“utilities.lisp”

(d) DONE:
“internal-data-structure.lisp”

(e) DONE:
“stock-data-structure.lisp”

(f) DONE:
“sugar.lisp”

(g) DONE:
“rule-funcs.lisp”

(h) DONE:
“sal.lisp”

38. DONE:
IMPORTANT to make the loading/unloading of the rule-funcs package
work! Update the make-install to handle:

(a) system + rule files ??? is this still needed?

(b) only the rule files. ??? is this still needed?

39. Cancelled:
Find a way of compiling the rule-funcs into their directory!

40. DONE:
Some strange differences in behavior between the CMU and Gnu lisps has
caused some setbacks... Setup installation, i.e. the loading from a single
file load, embedding the call to load “sal-config.lisp”. This needs to
be documented in the README, or INSTALL file.

41. CANCELLED:
Set verbose loading and compiling by using dynamic extent (shadowing)
of the std variables *compile-verbose* and *load-verbose* by means
of a let.

42. DONE:
Restructure all the top levels: blake-api, loader, data, rules, etc.

43. DONE:
The loading mechanism should follow the logic:

(a) init

(load "loader")

(b) iteration

August 23, 2006 closing.nw 165

etc.

(analyze <args>)

(goto b)

(defun analyze (ticker start stop \&rest other)

(clear)

(defdata (blake-get-data ticker)) ; should return the list as per ibm.lisp

(defmodel (blake-get-model (sgr:industry t)))

(load (compile (industry-2-rule-file-name (sgr:industry t)))

;; rule file contains calls to defrule, and defreport

(report)

In blake-api.lisp, the load-datum function could be split up to isolate
the loading of:

• attribute tuples,

• model-element tuples,

• report-element tuples,

• rule tuples.

44. DONE:
Fix the bad calls to reduce in report as per 6.2-full.

45. DONE:
Fix insertion of model attributes and report attributes! Something is
wrong with the insertion of the model attributes and the report attributes,
only the model attributes appear to be in the db!

46. DONE:
Create make-install.

47. DONE:
Use the function probe to detect presence of config file in:
“$HOME/.sal-config.lisp”. Obviously, the path must be specified in the
loader-file, but that’s the only place.

48. DONE:
Implement a logging mechanism that handles both std-out and file based
logging.

49. DONE:
Create configuration file sal-config.lisp, with at least the following:

(defparameter *sys-path*

(defparameter *bin-extension*

(defparameter *model-filename*

(defparameter *industry-rulefile-alist*

August 23, 2006 closing.nw 166

(defparameter *default-rule-filename*

(defparameter *output-path*

(defparameter *log-filename*

(defparameter *src-path*

(defparameter *src-filename-list*

etc.

50. DONE:
THIS IS NOT TO BE CHANGED, The semantics of (sugar ()) is cor-
rect and the return value is correct also: “The second return value for
(sugar ()) is not consistent with the first return value. This is not a
problem since the value is not currently used.”

51. Refine the language aspect of the system, loading mechanism and restruc-
ture. The language elements could be:

(a) DONE:
defdata: works!!

(b) DONE:
defrule: works!

(c) DONE:
defmodel: works!!!

(d) DONE:
defreport: works!

52. DONE:
The use of the “model attributes” as report indicators causes the report
ones to be duplicated in the hash table at key t –, there is no impact but
it’s ugly.

53. DONE:
Update Internal-Data-structure and Stock-db to support the use of the cdr
in the model attribute pairs as a boolean indicating if the model attribute
should be reported, or not. This boolean value will be assigned in the call
to defreport.

54. DONE:
Resolve the issue of package scoping in the macro calls to defrule, def...

55. DONE:
Write the following macro to do all the work needed in defining a rule and
associating it with attributes and precedence.

(defmacro defrule (name

applicable-attribute-lis

precedence

August 23, 2006 closing.nw 167

;; let the user call the args what he chooses!

arg-lis

&rest body)

...)

56. DONE:
The sugar functions will not be re-defined on a second load of data for
attributes that are not in the second data set. This will lead to subtle bugs
since the sugar function will work on the wrong internal data structure.

Chapter 14

Index

14.1 Symbol Definition Index

bi-bin-extension-string: 52, 150c
bi-src-filename-string-list: 52, 150d, 156
bi-src-path-string: 150a, 150a, 156
bi-sys-path-string: 52, 150b, 150b, 156
c-c-alis: 58a, 97, 124, 145
dribbling?: 140c, 141
io-log-filename-string: 133b, 152b, 152b
io-log-to-file: 133b, 152c, 152c
io-log-to-stdout: 133b, 152d, 152d
io-output-path-string: 48, 133b, 141, 152a, 152a
sal-db: 103a, 103b, 106b, 109
sm-default-industry: 44, 151d, 151d
sm-industry-rulefile-string-alist: 54, 151c
sm-model-filename-string: 12, 151b, 151b
sm-model-path-string: 12, 54, 151a
2string: 129a, 129a
abs-year: 72, 74b, 78, 129b, 129b
abstract-targets: 36
apply-attribute-sugar: 47a, 48, 50, 53b, 91, 105
att-name-2-sugar-func: 63, 86, 97, 106b, 109
attribute-sugar-function: 63, 64a, 66
bin-file-path: 3c
cfg-pkg-name-eval: 12, 44, 48, 52, 54, 130a, 156
comment-exec: 139, 140a, 140a
configfile-path: 3a
create-loop-detector: 86, 94a
create-secondary-table: 118, 119, 120a
create-simple-get-data: 86, 95b

168

August 23, 2006 closing.nw 169

create-sugar-function: 63, 66, 86
create-sugar-function-nullifier: 86, 88a, 88b
current-year: 7, 12, 44, 58a, 63, 66, 86, 129b, 130b, 130b
defdata: 44, 107b
defdata-helper: 107b, 108
defmodel: 107a
defreport: 75, 106a
defrule: 105
detailed-targets: 40b
do-compile-load: 156, 157
do-insert-return: 136a, 137a, 137a
do-log: 131, 132, 133a, 133b, 133b
drib: 7, 139, 141, 141
exec-sugar: 66, 68a
find-or-project: 72, 82, 95b
get-keys: 63, 89, 120b, 124
get-model-attributes: 48, 63, 89, 123
get-rules: 72, 83, 122
gethash-case-1-2: 116, 117
gethash-case-3-5: 116, 118
gethash-case-4: 116, 119
industry: 44, 53b, 96
init: 44, 103a, 103a
init-sugar: 44, 86, 97
INTERNAL-DATA-STRUCTURE: 113
io-path: 4b
key-2-pathname-lis: 54, 55
lisp-path: 4d
load-config: 52, 155, 156
load-datum: 108, 109
load-rules: 44, 53b
load-rules-helper: 53b, 54
load-sal: 52, 53a
log-filename: 4c
log-it: 43b, 44, 53b, 54, 105, 107b, 109, 131, 131, 132, 133a, 139, 141
logging: 7, 12, 43b, 58a, 131, 132, 132, 133a
lookup: 55, 75, 78, 80, 82, 83, 95b, 116, 121, 122, 124
loop-detect: 7, 12, 44, 58a, 84, 86, 94a, 94b
make-db: 86, 114, 120a, 124
make-install: 34, 156
make-null-sugar-func: 89, 90
Makefile: 33b, 36, 41
makefile: 34
Makefile.0: 33b, 33c, 36, 40a
map-model-atts: 121, 123, 124
map-ordered-insert: 122, 137b, 137b, 145

August 23, 2006 closing.nw 170

mappend: 134a, 134a
mode-filename: 4a
model-report-helper: 106a, 106b, 107a
model-rule-path: 3d
not-logging: 131, 132, 133a, 133a
nullify-sugar: 86, 88a, 88b
nullify-sugar-functions: 88a, 89
number-pair-insert: 135, 136a, 136a
numlist: 49, 74b, 134b, 134b
ordered-insert: 117, 119, 135, 135, 137b, 145
out-stream: 48, 138a, 138a
p-name-2-test-alis: 139, 140b, 140b
parse-0: 68b, 70, 76
parse-1: 68b, 70, 72, 74b, 78
parse-2: 68b, 74a
parse-2-2-numbers: 74a, 74b, 79
parse-2-model-att: 74a, 75
parse-2-projected?: 74a, 76
parse-3: 68b, 78
parse-4: 68b, 79
parse-4-rule: 79, 80
path-bin-it: 55, 56a
path-get: 12, 56a, 133b, 138a, 138b, 138b, 141
process: 7, 12, 43a, 58a
project: 78, 82, 83, 97
remove-double-spaces: 65, 92
report: 47a, 47a, 48, 106b
report-header: 47a, 49
report-line: 47a, 50
report-reduce-helper: 49, 51a
return-val-projected?: 82, 85
RF: 102
rf:init: 44, 103a
RULE-FUNCS: 102, 102, 105
rule-funcs.lisp: 34, 110a, 150d
s-assoc: 55, 142, 142
SAL: 42a, 42a
SAL-BUILD: 154
sal-build.lisp: 52, 158a
SAL-CONFIG: 57, 149
sal-config.lisp: 152e
SAL-PACKAGE: 42a
sal:process-body: 44
sal:process-signature: 12
set-up-and-report: 44, 48, 48
show-loop: 94a, 95a

August 23, 2006 closing.nw 171

some-rule: 83, 84
src-name-2-bin-name: 56a, 56b
string-pair-insert: 135, 136b, 136b
SUGAR: 57, 61, 64b, 66, 102
sugar-function-name: 64b, 65, 66
sugar-function-symbol: 64a, 64b, 89, 91
test: 7, 39a, 39b, 52, 63, 65, 89, 94a, 114, 136b, 139, 139, 142
utilities-test-harness: 145
utilities.lisp: 34, 143a, 150d
variables: 34
WIG-UTIL: 57, 128, 128
WUT: 57, 128

14.2 Defined Code Chunks

〈*sal-db* 103b〉 103b, 110a
〈2string 129a〉 129a, 143a
〈abs-year 129b〉 129b, 143a
〈abstract-targets 36〉 36, 41
〈api-helpers 47b〉 47b, 59
〈apply-attribute-sugar 91〉 91, 98c
〈att-name-2-sugar-func 63〉 63, 98c
〈attribute-sugar-function 64a〉 64a, 98c
〈attribute-sugar-function-manipulators 98c〉 98b, 98c
〈bin-file-path 3c〉 3c, 34, 39c, 150b
〈build-install data 150a〉 150a, 150b, 150c, 150d, 152e
〈call-load-sal 53a〉 51b, 53a
〈cfg-pkg-name-eval 130a〉 59, 130a, 158a
〈comment-exec 140a〉 140a, 143a
〈configfile-path 3a〉 3a, 34, 53a
〈create-loop-detector 94a〉 94a, 98d
〈create-secondary-table 120a〉 120a, 126
〈create-simple-get-data 95b〉 95b, 98e
〈create-sugar-function 66〉 66, 98e
〈create-sugar-function-nullifier 88a〉 88a, 98e
〈current-year 130b〉 130b, 143a
〈defdata 107b〉 107b, 110a
〈defdata-helper 108〉 108, 110a
〈defmodel 107a〉 107a, 110a
〈defreport 106a〉 106a, 110a
〈defrule 105〉 105, 110a
〈detailed-targets 37〉 37, 38a, 38b, 38c, 38d, 39a, 39b, 39c, 39d, 40a, 40b, 41
〈do-compile-load 157〉 157, 158a
〈do-insert-return 137a〉 137a, 143a
〈do-log 133b〉 133b, 143a

August 23, 2006 closing.nw 172

〈drib 140c〉 140c, 141, 143a
〈emacs-commands 40c〉 33a, 40c, 41
〈eoc 143c〉 59, 98b, 126, 143a, 143c
〈eof 144〉 59, 98b, 110a, 126, 143a, 144, 152e, 158a
〈exec-sugar 68a〉 68a, 99c
〈find-or-project 82〉 82, 99b
〈get-keys 120b〉 120b, 126
〈get-model-attributes 123〉 123, 126
〈get-rules 122〉 122, 126
〈gethash-case-1-2 117〉 117, 126
〈gethash-case-3-5 118〉 118, 126
〈gethash-case-4 119〉 119, 126
〈industry 96〉 96, 98e
〈init-sugar 86〉 86, 98e
〈input-output data 152a〉 152a, 152b, 152c, 152d, 152e
〈install-examples 6a〉 6a
〈internal-data-structure-pkg-def 113〉 113, 126
〈internal-data-structure-test-harness 124〉 124, 126
〈internal-data-structure.lisp 126〉 126
〈io-path 4b〉 4b, 152a
〈key-2-pathname-lis 55〉 51b, 55
〈lisp-header 143b〉 59, 98b, 110a, 126, 143a, 143b, 152e, 158a
〈lisp-path 4d〉 4d, 34
〈load-config 155〉 59, 155, 158a
〈load-datum 109〉 109, 110a
〈load-rules 53b〉 51b, 53b
〈load-rules-helper 54〉 51b, 54
〈load-sal 52〉 51b, 52
〈load-sal-bin 6c〉 6c
〈load-test-data 6d〉 6d
〈loading-astuces 57〉 57, 59
〈log-filename 4c〉 4c, 152b
〈log-it 131〉 131, 143a
〈logging 132〉 132, 143a
〈lookup 116〉 116, 126
〈loop-detect 94b〉 94b, 98d
〈loop-detection 98d〉 98b, 98d
〈make-db 114〉 114, 126
〈make-install 156〉 156, 158a
〈make-install-sal 5〉 5
〈make-Makefile.0 33c〉 33b, 33c, 41
〈make-null-sugar-func 90〉 90, 98e
〈Makefile 41〉 41
〈makefile variables 34〉 34, 41
〈Makefile.0 33a〉 33a, 33b
〈map-model-atts 121〉 121, 126

August 23, 2006 closing.nw 173

〈map-ordered-insert 137b〉 137b, 143a
〈mappend 134a〉 134a, 143a
〈mode-filename 4a〉 4a, 151b
〈model-report-helper 106b〉 106b, 110a
〈model-rule-path 3d〉 3d, 34, 151a
〈not-logging 133a〉 133a, 143a
〈nullify-sugar 88b〉 88b, 98e
〈nullify-sugar-functions 89〉 89, 98e
〈number-pair-insert 136a〉 136a, 143a
〈numlist 134b〉 134b, 143a
〈ordered-insert 135〉 135, 143a
〈out-stream 138a〉 138a, 143a
〈p-name-2-test-alis 140b〉 140b, 143a
〈parse-0 70〉 70, 99a
〈parse-1 72〉 72, 99a
〈parse-2 74a〉 74a, 99a
〈parse-2-2-numbers 74b〉 74b, 99a
〈parse-2-model-att 75〉 75, 99a
〈parse-2-projected? 76〉 76, 99a
〈parse-3 78〉 78, 99a
〈parse-4 79〉 79, 99a
〈parse-4-rule 80〉 80, 99a
〈parse-funcs 68b〉 68b, 99c
〈parsing-functions 99a〉 98b, 99a
〈parsing-helpers 99b〉 98b, 99b
〈path-bin-it 56a〉 51b, 56a
〈path-get 138b〉 138b, 143a
〈process 43a〉 42b, 43a
〈project 83〉 83, 99b
〈remove-double-spaces 92〉 92, 98c
〈report 47a〉 42b, 47a
〈report-header 49〉 47b, 49
〈report-line 50〉 47b, 50
〈report-reduce-helper 51a〉 47b, 51a
〈return-val-projected? 85〉 85, 99b
〈rf:init 103a〉 103a, 110a
〈rule-funcs-debugging-helpers 110b〉 110a, 110b
〈rule-funcs-pkg-def 102〉 102, 110a
〈rule-funcs.lisp 110a〉 110a
〈run-sal-test 7〉 7
〈s-assoc 142〉 142, 143a
〈sal-api 42b〉 42b, 59
〈sal-build-debugging-helpers 158b〉 158a, 158b
〈sal-build-pkg-def 154〉 154, 158a
〈sal-build.lisp 158a〉 158a
〈sal-config package 149〉 149, 152e

August 23, 2006 closing.nw 174

〈sal-config.lisp 152e〉 152e
〈sal-debugging-helpers 58b〉 58b, 59
〈sal-loading-utils 51b〉 51b, 59
〈sal-package 42a〉 42a, 59
〈sal-test-harness 58a〉 58a, 59
〈sal.lisp 59〉 59
〈sal:process-arg-def 12〉 12, 43a
〈sal:process-body 43b〉 43a, 43b, 44
〈set-up-and-report 48〉 47b, 48
〈show-loop 95a〉 95a, 98d
〈some-rule 84〉 84, 99b
〈src-file-path 3b〉 3b, 150a
〈src-name-2-bin-name 56b〉 51b, 56b
〈start-lisp 6b〉 6b
〈stock-model-data 151a〉 151a, 151b, 151c, 151d, 152e
〈string-pair-insert 136b〉 136b, 143a
〈sugar-debugging-helpers 98a〉 98a, 98b
〈sugar-execution 99c〉 98b, 99c
〈sugar-function-name 65〉 65, 98c
〈sugar-function-symbol 64b〉 64b, 98c
〈sugar-package-def 61〉 61, 98b
〈sugar-package-init 98e〉 98b, 98e
〈sugar-test-harness 97〉 97, 98b
〈sugar.lisp 98b〉 98b
〈test 139〉 139, 143a
〈utilities package 128〉 128, 143a
〈utilities-test-harness 145〉 143a, 145
〈utilities.lisp 143a〉 143a

